全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

(3+1)维广义KdV-Zakharov-Kuznetsev方程的对称、约化和精确解

, PP. 670-677

Keywords: 非线性方程,mKdV-ZK方程,直接对称法,相似约化,精确解,守恒律

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用直接对称方法得到了广义KdV-Zakharov-Kuznetsev方程(简写为mKdV-ZK)的对称约化、精确解,其中包括椭圆函数解,幂级数解,艾米儿函数解等.利用得到的对称,求出了该方程的守恒律.

References

[1]  Liu N, Liu X-Q Similarity reductions and similarity solutions of the (3+1)-dimensional Kadomtsev– Petviashvili equation. Chinese Physics Letter 2008; 25 : 3527–3530.
[2]  Wang L, Liu X-Q, Dong Z Z. Study of (2+1)-dimensional higher-order Broer–Kaupsystem, Communications in Theoretical Physics 2007; 47: 403–408.
[3]  Zayed E M E. Traveling wave solutions for higher dimensional nonlinear evolution equations using the (G′/G)-expansion method. Journal of Applied Mathematics and Informatics. 2010; 28:383–395.
[4]  Naher H, Abdullah F A and Ali M, New Traveling Wave Solutions of the Higher Dimensional Nonlinear Partial Differential Equation by the Exp-Function Method. Journal of Applied Mathematics. 2012; 2012: 575-387.
[5]  田畴.李群及其在微分方程中的应用[M].北京:科学出版社,2001.
[6]  Bai C-L, Bai C-L and Zhao H, A Generalized Variable-Coefficient Algebraic Method Exactly Solving (3+1)-Dimensional Kadomtsev–Petviashvilli Equation. Communications in Theoretical Physics 2005; 44: 821-826.
[7]  Clarkson P A. Painleve equations-nonlinear special functions. Applied Mathematics and Computation 2003; 153 : 127-140.
[8]  Ibragimov N H. A new conservation theorem . Journal of Mathematical Analysis Application, 2007, 333: 311–328.
[9]  Bansal A, Gupta RK. Modified (G′∕G)-expansion method for finding exact wave solutions of the coupled Klein–Gordon–Schr?dinger equation. Applied Mathematics and Computation 2012; 35: 1175-1187.
[10]  Fan E-G, Zhang J. Applications of the Jacobi elliptic function method to special-type nonlinear equations. Physics Letter A 2002; 305:383-392.
[11]  He J-H. Exp-function method for nonlinear wave equation . Chaos, Solitons and Fractals 2006; 30:700-708.
[12]  Khater A H, Helal M A, El-Kalaawy O H. B?cklund transformations: exact solutions for the KdV and the Calogero–Degasperis–Fokas mKdV equations. Mathematical Methods in the Applied Sciences 1998; 21: 719–731.
[13]  Zedan H A, Tantawy S S. Exact solutions for a perturbed nonlinear Schr?dinger equation by using B?cklund transformations. Mathematical Methods in the Applied Sciences 2009; 32: 1068–1081.
[14]  Bai C-L, Bai C-J, Zhao H. Traveling wave solutions for the generalized Zakharov–Kuznetsov equation with higher-order nonlinear terms. Applied Mathematics and Computation 2009; 208:144-155.
[15]  Zhang Y-Y, Wang G-W, Liu X-Q. Symmetry reductions and exact solutions of the (2+1)-dimensional Jaulent-Miodek equation. Applied Mathematics and Computation 2012; 219: 911-916.
[16]  Bruzón M S, Gandarias ML. Symmetry reductions and traveling wave solutions for the Krichever–Novikov equation. Mathematical Methods in the Applied Sciences 2012; 35: 869–876.
[17]  El-Shiekh R M. New exact solutions for the variable coefficient modified KdV equation using direct reduction method. Mathematical Methods in the Applied Sciences 2013; 36:1–4.
[18]  Chen M, Liu X-Q. Symmetries and exact solutions of the breaking soliton equation.Communications in Theoretical Physics 2011; 56:851-855.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133