全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境化学  2015 

DOI:10.7524/j.issn.0254-6108.2014.07.020

Keywords: ,形态,生物有效性,BLM模型,太湖

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用BLM(生物配体模型)预测了太湖水环境条件下Cu的不同形态分布、Cu对大型蚤(Daphniamagna)的生物有效性及Cu在太湖水体的水质基准值,并分析了环境因子与这些预测值的相互关系.结果显示,太湖水体中的Cu主要以有机结合态形式存在,有机结合态Cu占水体中总Cu的99.75%.而大型蚤体内Cu主要以离子态与生物体活性点位相结合,其质量分数为3.97ng·mg-1.Cu对大型蚤的LC50(半致死浓度)的预测值平均为710.60μg·L-1,其最大值出现在北部湖区的竺山湾,而最小值出现在东部湖区,并表现出显著的空间差异性.利用BLM推导出的太湖水体中Cu的CMC(基准最大浓度值)平均值为434.01μg·L-1,CCC(基准连续浓度值)平均值为217.04μg·L-1,分别为美国水质基准值的36和24倍.环境因子和各参数预测值的相关性分析显示,溶解性有机质中的腐殖酸含量是影响太湖中Cu的形态的主要因子,而pH是影响Cu对大型蚤的生物有效性和水质基准值的关键因子.因此,在制订太湖Cu的水质基准值时,要充分考虑水体溶解性有机质组成和pH的影响.

References

[1]  US EPA. Aquatic life ambient freshwater quality criteria-copper. Technical Report[R]. Washington D C: Office of Water Regulations and Standards Criteria Division, 2007
[2]  王春艳,陈浩,安立会,等.BLM预测水中重金属生物有效性研究进展[J]. 环境科学与技术, 2011, 34(8):75-80
[3]  孟伟, 吴丰昌. 水质基准的理论与方法学导论[M]. 北京:科学出版社, 2010
[4]  马倩, 刘俊杰, 高明远. 江苏省入太湖污染量分析(1998-2007年)[J]. 湖泊科学, 2010, 22(1):29-34
[5]  孟庆俊,张彦,冯启言,等. 腐殖酸对NH4+-N在饱和含水层中迁移的影响[J]. 环境科学, 2011,32(11):3357-3364
[6]  刘冠男, 刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学, 2013, 32(7): 1308-1317
[7]  Park J H. Spectroscopic characterization of dissolved organic matter and its interactions with metals in surface waters using size exclusion chromatography[J]. Chemosphere, 2009, 77(4): 485-494
[8]  Chen M, Price R M, Yamashita Y, et al. Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics[J]. Appl Geochiem, 2010, 25(6): 872-880
[9]  Amery F, Degryse F, Degeling W, et al. The copper-mobilizing-potential of dissolved organic matter in soils varies 10-fold depending on soil incubation and extraction procedures[J]. Environ Sci Technol, 2007, 41(7): 2277-2281
[10]  范文宏, 陈俊, 王琼. 胡敏酸对沉积物中重金属形态分布的影响[J]. 环境化学, 2007, 26(2): 224-227
[11]  石陶然, 张远, 于涛, 等. 滇池沉积物不同分子量溶解性有机质分布及其与Cu和Pb的相互作用[J]. 环境科学研究, 2013, 26(2):137-144
[12]  Rausina G A, Wong D C L, Raymon A W, et al. Toxicity of methyl tert-butyl ether to marine organisms: Ambient water quality criteria calculation[J]. Chemosphere, 2002, 47(5): 525-534
[13]  Fan W H, Tang G E, Zhao C M, et al. Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure[J]. Environ Toxicol Chem, 2009, 28(2): 305-310
[14]  郑新梅, 丁亮, 刘红玲, 等. 对硝基酚对大型蚤和斑马鱼胚胎的毒性[J]. 生态毒理学报, 2010, 5(5):692-697
[15]  中国替代方法研究评价中心. 世界动物实验日[EB/OL].[2003-10-27]. http://www.vitrotox.com/show_new.asp?id=1794, 2013年10月22日
[16]  De Schamphelaere K A C, Janssen C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH[J]. Environ Sci Technol, 2002, 36(1): 48-54
[17]  Schlekat C E, Van Genderen E, De Schamphelaere K A C, et al. Cross-species extrapolation of chronic nickel Biotic Ligand Models[J]. Sci Total Environ, 2010, 408(24): 6148-6157
[18]  The Biotic Ligand Model Windows Interface, Version 2.2.3: User's Guide and Reference Manual, HydroQual, Inc, Mahwah, NJ[R]. April 2005
[19]  Geng A C, Zhang S, Hoeiand H. Complex behaviour of trivalent rare earth elements by humic acids[J]. J Environ Sci, 1998, 10(3): 302-308
[20]  Yu T, Zhang Y, Meng W, et al. Characterization of heavy metals in water and sediments in Taihu Lake, China[J]. Environ Monit Assess, 2012, 184(7): 4367-4382
[21]  Fu P Q, Wu F C, Liu C Q, et al. Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg (Ⅱ)[J]. Appl Geochiem, 2007, 22(8): 1668-1679
[22]  王津南, 李爱民, 张波, 等. 水体中腐殖酸的去除[J]. 水处理技术, 2007, 33(12):7-10
[23]  Wu J, Zhang H, He P J, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis[J]. Water Res, 2011, 45(4): 1711-1719
[24]  Yu T, Zhang Y, Zhang Y. Distribution and bioavailability of heavy metals in different particle-size fractions of sediments in Taihu Lake, China[J]. Chem Speciation Bioavailability, 2012, 24(4):205-215
[25]  Li Z L, Zhou L X. Cadmium transport mediated by soil colloid and dissolved organic matter: A field study[J]. J Environ Sci, 2010, 22(1): 106-115
[26]  Tan C, Fan W H, Wang W X. Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna[J]. Environ Sci Technol, 2011, 46(1): 469-476
[27]  Guilhermino L, Diamantino T, Carolina S M, et al. Acute toxicity test with daphnia magna: An alternative to mammals in the prescreening of chemical toxicity ?[J]. Ecotoxicol Environ Saf, 2000, 46(3): 357-362
[28]  吴丰昌, 孟伟, 宋永会, 等.中国湖泊水环境基准的研究进展[J]. 环境科学学报, 2008,28(12): 2385-2393
[29]  USEPA, National Recommended Water Quality Criteria[R]. Washington D C: Office of Water, Office of science and Technology, 2009
[30]  Biddanda B A, Cotner J B. Enhancement of dissolved organic matter bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and Michigan[J]. J Great Lakes Res, 2003, 29(2): 228-241
[31]  Great Lakes Environmental Database (GLENDA), US EPA.:http://www.epa.gov/glnpo/monitoring/data_proj/glenda/index.html.[EB/OL][2013-07-09]..
[32]  Yu Tao, Zhang Yuan, Wu Fengchang, et al. Six-decade change in water chemistry of large freshwater Lake Taihu, China[J]. Environment Science & Technology, 103, 47 (16): 9093-9101
[33]  向馥徽. 氨、亚硝酸盐及其与藻毒素对两种水蚤生活史特征的影响[D].南京: 南京师范大学硕士学位论文, 2011
[34]  Peng J, Song Y, Yuan P, et al. The remediation of heavy metals contaminated sediment[J]. J Hazard Mater, 2009, 161(2): 633-640

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133