Arnott W P, Moosmüller H, Rogers C F, et al. Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description[J]. Atmos Environ, 1999, 33: 2845-2852
[2]
Arnott W P, Hamasha K, Moosmüller H, et al. Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and 3-wavelength nephelometer[J]. Aerosol Sci Tech, 2005, 39: 17-29
[3]
Petzold A, Schloesser H, Sheridan P J, et al. Evaluation of multi-angle absorption photometry for measuring aerosol light absorption[J]. Aerosol Sci Tech, 2005, 39: 40-51
[4]
Petzold A, Schnlinner M. Multi-angle absorption photometry-a new method for the measurement of aerosol light absorption and atmospheric black carbon[J]. J Aerosol Sci, 2004, 35: 421-441
[5]
Schnaiter M, Schmid O, Petzold A, et al. Measurement of wavelength-resolved light absorption by aerosols utilizing a UV-VIS extinction cell[J]. Aerosol Sci Tech, 2005, 39: 249-260
Novakov T, Ramanthan V, Kirchstetter T W, et al. Large historical changes of fossil-fuel black carbon aerosols[J]. Geophys Res Lett, 2003, 30, doi:10.1029/2002GL016345
[10]
Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion[J]. J Geophys Res, 2004, 109, D14203, doi:10.1029/2003jd003697
[11]
Bond T C, Bergstrom R W. Light absorption by carbonaceous particles: an investigative review[J]. Aerosol Sci Tech, 2006,40:27-67
[12]
Penner J E, Novakov T. Carbonaceous particles in the atmosphere: a historical perspective to the Fifth International Conference on carbonaceous particles in the atmosphere[J]. J Geophys Res, 1996, 101: 19373-19378
[13]
Andreae M O, Geleneser A. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols[J]. Atmos Chem Phys, 2006, 6: 3131-3148
[14]
Chuang C C,Penner J E,GrantK E,et al. Cloud susceptibility and the first aerosol indirect forcing,sensitivity to black carbon and aerosol concentrations[J].J Geophys Res,2002, 107: 4564
[15]
Strawa A W, Drdla K, Ferry G V, et al. Carbonaceous aerosol (soot) measured in the lower stratosphere during POLARIS and its role in stratospheric photochemistry[J]. Journal of Geophysical Research,1999,104:26753-26766
Hansen J, Nazarenko L. Soot climate forcing via snow and ice albedos[J]. Proc Natl Acad Sci, 2004, 101: 423-428
[23]
Venkataraman C, Habib G, Eiguren F A, et al. Residential biofuels in South Asia: carbonaceous aerosol emission and climate impacts[J]. Science, 2005, 307: 1454-1456
[24]
Ramanathan V, Ramana M V, Roberts G, et al. Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 2007, 448: 575-578
[25]
Kaufman Y J, Tanré D, Dubovik O, et al. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing[J]. Geophys Res Lett, 2001, 28: 1479-1482
[26]
Haywood J M, Osborne S R, Francis P N, et al. The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircrat during SAFARI 2000[J]. J Geophys Res, 2003, 108, doi:10.1029/2002JD002226
[27]
Bellouin N, Boucher O, Tanré D, et al. Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations[J]. Geophys Res Lett, 2003, 30, doi:10.1029/2003GL017121
[28]
Ramanathan V, Chung C, Kim D, et al. Atmospheric brown clouds: impacts on South Asian climate and hydrologic cycle[J]. Proc Natl Acad Sci, 2005, 102: 5326-5333
[29]
Menon S, Hanson J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India[J]. Science, 2006, 297: 2250-2253
[30]
Jacobson M Z. Control of fossil fuel particulate black carbon and organic matter,possibly the most effective method of slowing global warming[J]. J Geophys Res, 2002, 107: 4410-4432
[31]
Kirchstetter T W, Novakov T, Hobbs P V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon[J]. J Geophys Res, 2004, 109, doi:10.1029/2004JD004999
[32]
Popovicheva O B, Kireeva E D, Shonija N K, et al. Water interaction with laboratory simulated fossil fuel combustion particles[J]. J Phys Chem A, 2009, 113: 10503-10511
[33]
Peng C, Chan M N, Chan C K. The hygroscopic properties of dicarboxylic and multifunctional acids: Measurements and UNIFAC predictions[J]. Environ Sci Technol, 2001, 35: 4495-4501
[34]
Prenni A J, DeMott P J, Kreidenweis S M, et al. The effects of low molecular weight dicarboxylic acids on cloud formation[J]. J Phys Chem A, 2001, 105: 11240-11248
[35]
Zhang R, Khalizov A F, Pagels J, et al. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing[J]. Proc Natl Acad Sci, 2008, 105: 10291-10296
[36]
Khalizov A F, Zhang R, Zhang D, et al. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric acid vapor[J]. J Geophys Res, 2009, 114, D05208, doi:10.1029/2008JD01059
[37]
Schnaiter M, Linke V, Mhler O, et al. Absorption amplification of black carbon internally mixed with secondary organic aerosol[J]. J Geophys Res, 2005, 110, D19204, doi:10.1029/2005JD006046
[38]
Gangl M, Kocifajb M, Videenc G, et al. Light absorption by coated nano-sized carbonaceous particles[J]. Atmos Environ, 2008, 42: 2571-2581
[39]
Shiraiwa M, Kondo Y, Iwamoto T, et al. Amplification of light absorption of black carbon by organic coating[J]. Aerosol Sci Tech, 2010, 44: 46-54
[40]
Sorensen C M. Light scattering by fractal aggregates: A review[J]. Aerosol Sci Tech, 2001, 35: 648-687
[41]
Carrico C M, Bergin M H, Xu J, et al. Urban aerosol radiative properties: measurements during the 1999 Atlanta supersite experiment[J]. J Geophys Res, 2003, 108(D7), 8422, doi:10.1029/2001JD001222
[42]
Bellouin N, Boucher O, Haywood J, et al. Global estimate of aerosol direct radiative forcing from satellite measurements[J]. Nature, 2005, 438: 1138-1141
[43]
Yu H, Kaufman Y J, Chin M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing[J]. Atmos Chem Phys, 2006, 6: 613-666
[44]
Chung C, Ramanathan V, Kim D, et al. Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations[J]. J Geophys Res, 2005, 110, doi:10.1029/2005JD006356
[45]
Ramanathan V, Li F, Ramana M V, et al. Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing[J]. J Geophys Res, 2007, 112, doi:10.1029/2006JD008124
[46]
Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2001, 409: 695-697
[47]
Yin S, Wang W, Ge Maofa, The uptake of ethyl iodide on black carbon surface[J]. Chinese Sci Bull, 2008, 53(5): 733-738
[48]
Ge Maofa, Wang W, Yin S. Heterogenous chemistry of dimethyl sulfide on soot surfaces[J]. Chem Phys Lett, 2008, 453: 296-300
[49]
Mikhailov E F, Vlasenko S S, Podgorny I A, et al. Optical properties of soot water drop agglomerates: An experimental study[J]. J Geophys Res, 2006, 111, D07209, doi:10.1029/2005JD006389
[50]
Wiley J, Hoboken N J, Sierk B, et al. Field measurements of water vapor continuum absorption in the visible and near-infrared[J]. J Geophys Res, 2004, 109, D08307, doi:10.1029/ 2003JD003586
[51]
Adachi K, Buseck P R.Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City[J]. Atmos Chem Phys,2008, 8: 6469-6481
[52]
Fuller K A, Malm W C, Kreidenweis S M. Effects of mixing on extinction by carbonaceous particles[J]. J Geophys Res, 1999, 104: 15941-15954
[53]
Jacobson M Z. A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols[J]. Geophys Res Lett, 2000, 27: 217-220
[54]
Xue H, Khalizov A F, Wang L, et al. Effects of dicarboxylic acid coating on the optical properties of soot[J]. Phys Chem Chem Phys, 2009, 11: 7869-7875
[55]
Erlick C, Schlesinger D. Another look at the influence of absorbing aerosols in drops on cloud absorption: large aerosolsm[J]. J Aerosol Sci, 2008, 65: 661-669
[56]
Xue H, Khalizov A F, Wang L, et al. Effects of coating of dicarboxylic acids on the mass mobility relationship of soot particles[J]. Environ Sci Technol, 2009, 43: 2787-2792
[57]
Adachi K, Buseck P R. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City[J]. Atmos Chem Phys, 2008, 8: 6469-6481
[58]
Chen Y, Penner J E, Uncertainty analysis for estimates of the first indirect aerosol effect[J]. Atmos Chem Phys, 2005, 5: 2935-2948
[59]
Liousse C, Cachier H, Jennings S G, Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross section[J]. Atmos Environ, 1993, 27: 1203- 1211
[60]
Weingartner E, Saathof H, Schnaiter M, et al. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers[J]. J Aerosol Sci, 2003, 34: 1445-1463
[61]
Bond T C, Anderson T L, Campbell D. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols[J]. Aerosol Sci Tech, 1999, 30: 582-600
[62]
Sheridan P J, Arnott W P, Ogren J A, et al. The reno aerosol optics study: an evaluation of aerosol absorption measurement methods[J]. Aerosol Sci Tech, 2005, 39: 1-16
[63]
Schnaiter M, Horvath H, Mhler O, et al. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols[J]. J Aerosol Sci, 2003, 34: 1421-1444
[64]
Schnaiter A, Gimmler M, Llamas I, et al. Strong spectral dependence of light absorption by organic carbon particles formed by propane combustion[J]. Atmos Chem Phys, 2006, 6: 2981-2990
[65]
Thompson J E, Duvall R, Policarpro D, et al. Development of a fixed frequency aerosol albedometer[J]. Opt Express, 2008, 16:2191-2205
Bond T C, Bhardwaj E, Dong R, et al. Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850—2000[J]. Global Biogeochem Cy, 2007, 21, doi:10.1029/2006GB002840
[74]
Penner J E, Eddleman H, Novakov T. Towards the development of a global inventory for black carbon emissions[J]. Atmos Environ, 1993, 27: 1277-1295
[75]
IPCC. Third Assessment Report, Climate Change 2001: The Scientific Basis. New York: Cambridge University Press, 2001
[76]
Chung C, Ramanathan V. Relationship between trends in land precipitation and tropical SST gradient[J]. Geophys Res Lett, 2007, 34, doi10.1029/2007GL030491
[77]
Martin R V, Daniel J J, Robert M Y, et al.Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols[J].J Geophys Res, 2003, 108: 4097-4116
[78]
Andreae M O, Rosenfeld D, Artaxo P, et al. Smoking rain clouds over the amazon[J]. Science, 2004, 303: 1337-1341
[79]
Haywood J M, Boucher O. Estimates of direct and indirect radiative forcing due to tropospheric aerosols: A review[J]. Rev Geophys, 2000, 38: 513-543
[80]
Ramanathan V, Carmichael G. Global and regional climate changes due to black carbon[J]. Nat Geosci, 2008, 1:221-227
[81]
Clarke A, Noone K. Soot in the Arctic: a cause for perturbation in radiative transfer[J]. J Geophys Res, 1985, 19: 2045-2053
[82]
Warren S, Wiscombe W. Dirty snow after nuclear war[J]. Nature, 1985, 313: 467-470
[83]
Flanner M G, Zender C S, Randerson J T, el al. Present-day forcing and response from black carbon in snow[J]. J Geophys Res, 2007, 112, doi:10.1029/2006JD008003
[84]
Holland M M, Bitz C M, Tremblay B. Future abrupt reductions in the summer Arctic sea ice[J]. Geophys Res Lett, 2006, 33, doi:10.1029/2006GL028024
[85]
Ramanathan V, Crutzen P J, Kieh J T, et al. Aerosols,climate,and the hydrological cycle[J]. Science, 2001, 294: 2119-2124
[86]
Wang C. A modeling study on the climate impacts of black carbon aerosols[J]. J Geophys Res, 2004, 109, doi:10.1029/2003JD004084
[87]
Chung S H, Seinfeld J H. Climate response of direct radiative forcing of anthropogenic black carbon[J]. J Geophys Res, 2005, 110, doi:10.1029/2004JD005441