全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

SO42-/MxOy型固体超强酸酸中心结构及其在轻质烷烃异构化反应中的机理研究进展

DOI: 10.16085/j.issn.1000-6613.2015.11.013, PP. 3906-3914

Keywords: 烷烃,催化剂,SO42-/MxOy固体超强酸,活性,异构化,机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

烷烃异构化是提高汽油辛烷值的重要方法。本文阐述了SO42-/MxOy型固体超强酸的表面特征及其酸中心的形成机理与调控方法。综述了SO42-/MxOy型固体超强酸催化剂轻质烷烃异构化碳正离子机理、单分子反应机理、双分子反应机理和金属/酸性双功能催化剂催化机理。介绍了在SO42-/MxOy型固体超强酸催化剂上异构化反应机理的不同观点。今后,需进一步深入开展轻质烷烃异构化反应机理、活性位形成及催化剂失活原因等方面的研究,探究固体超强酸催化剂的改性方法和制备方法,制备出高催化剂活性和稳定性的异构化催化剂。

References

[1]  Yue B,Ma Y,Tao H,et al. CNx nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation[J]. Journal of Materials Chemistry,2008,18(15):1747-1750.
[2]  Adeeva V,Dehaan J W,Janchen J,et al. Acid sites in sulfated and metal-promoted zirconium dioxide catalysts[J]. Journal of Catalysis,1995,151(2):364-372.
[3]  Dong Z H,Lai X Y,Halpert J E,et al. Accurate control of multishelled ZnO hollow microspheres for dye-Sensitized solar cells with high effiiency[J]. Adv. Mater.,2012,24(8):1046-1049.
[4]  Jin H,Zhang H,Zhong H,et al. Nitrogen-doped carbon xerogel:A novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells[J]. Energy & Environmental Science,2011,4(9):3389-3394.
[5]  Cychosz K A,Ahmad R,Matzger A J. Liquid phase separations by crystalline microporous coordination polymers[J]. Chem. Sci.,2010,1(3):293-302.
[6]  Phan A,Doonan C J,Uribe-Romo F J,et al. Synthesis, structure,and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of Chemical Research,2010,43(1):58-67.
[7]  Lu G H,Qi L M,Yang J H,et al. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route[J]. Adv. Mater.,2005,17(21):2562-2567.
[8]  Han L J,Liu R J,Li C,et al. Controlled synthesis of double-shelled CeO2 hollow spheres and enzyme-free electrochemical bio-sensing properties for uric acid[J]. J. Mater. Chem.,2012,22(33):17079-17085.
[9]  Zarkalis A S,Hsu C Y,Gates B C. Solid superacid catalysis-kinetics of butane isomerization catalyzed by a sulfated oxide containing iron,manganese,and zirconium[J]. Catalysis Letters,1994,29(1/2):235-239.
[10]  Liu S H,Wu J R. Nitrogen-doped ordered mesoporous carbons as electrocatalysts for methanol-tolerant oxygen reduction in acid solution[J]. International Journal of Hydrogen Energy,2011,36(1):87-93.
[11]  Assfour B,Leoni S,Seifert G. Hydrogen adsorption sites in zeolite imidazolate frameworks ZIF-8 and ZIF-11[J]. J. Phys. Chem. C,2010,114(31):13381-13384.
[12]  Horcajada P,Gref R,Baati T,et al. Metal-organic frameworks in biomedicine[J]. Chem. Rev.,2011,112(2):1232-1268.
[13]  Tan Y W,Xue X Y,Peng W,et al. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios[J]. Nano Lett.,2007,7(12):3723-3728.
[14]  刁红敏,任素贞. 沸石咪唑酯骨架结构材料合成及性能研究进展[J]. 化工进展,2010,29(9):1658-1669. 浏览
[15]  Ma X M,Zhang X T,Yang L,et al. An unusual temperature gradient crystallization process:Facile synthesis of hierarchical ZnO porous hollow spheres with controllable shell numbers[J]. Cryst. Eng. Comm.,2014,16(34):7933-7941.
[16]  Li Xuebing,Nagaoka Katsutoshi,Simon Laurent J,et al. Mechanism of butane skeletal isomerization on sulfated zirconia[J]. Journal of Catalysis,2005,232(2):456-466.
[17]  Talapaneni S N,Mane G P,Mano A,et al. Synthesis of nitrogen-rich mesoporous carbon nitride with tunable pores,band gaps and nitrogen content from a single aminoguanidine precursor[J]. ChemSusChem,2012,5(4):700-708.
[18]  Kurmoo M. Magnetic metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1353-1379.
[19]  Deng S Z,Tjoa W,Fan H M,et al. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor[J]. J. Am. Chem. Soc.,2012,134(10):4905-4917.
[20]  Yang L L,Yu L,Sun M,et al. Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate[J]. Catalysis Communications,2014,54:86-90.
[21]  Zhang L X,Sun Y X,Jia W B,et al. Multiple shell hollow CoFe2O4 spheres:Synthesis,formation mechanism and properties[J]. Ceram. Int.,2014,40(7):8997-9002.
[22]  Essayem N,Taarit Y Ben,Feche C,et al. Comparative study of n-pentane isomerization over solid acid catalysts,heteropolyacid,sulfated zirconia,and mordenite:Dependence on hydrogen and platinum addition[J]. Journal of Catalysis,2003,219(1):97-106.
[23]  Han X P,Hu Y X,Yang J G,et al. Porous perovskite CaMnO3 as an electrocatalyst for rechargeable Li-O2 batteries[J]. Chemical Communications,2014,50:1497-1499.
[24]  Wang X,Lee J S,Zhu Q,et al. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction[J]. Chemistry of Materials,2010,22(7):2178-2180.
[25]  Wang W Z,Wang G G,Wang X S,et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route[J]. Adv. Mater.,2002,14(1):67-69. 3.0.CO;2-Z target="_blank">
[26]  Allendorf M D,Bauer C A,Bhakta R K,et al. Luminescent metal-organic frameworks[J]. Chem. Soc. Rev.,2009,38(5):1330-1352.
[27]  Sun C Y,Qin C,Wang X L,et al. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle[J]. Dalton Trans.,2012,41(23):6906-6909.
[28]  Qi J,Zhao K,Li G D,et al. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation[J]. Nanoscale,2014,6(24):4072-4077.
[29]  Jin C,Yang Z B,Cao X C,et al. A novel bifunctional catalyst of Ba0.9Co0.5 Fe0.4Nb0.1O3-δ perovskite for lithium-air battery[J]. International Journal of Hydrogen Energy,2014,39:2526-2530.
[30]  Gole B,Bar A K,Mukherjee P S. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives[J]. Chem. Commun.,2011,47(44):12137-12139.
[31]  Qian F,Wang G M,Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode[J]. Nano Lett.,2010,10(11):4686-4691.
[32]  He C,Hu X. Anionic dye adsorption on chemically modified ordered mesoporous carbons[J]. Industrial & Engineering Chemistry Research,2011,50(24):14070-14083.
[33]  Banerjee R,Phan A,Wang B,et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science,2008,319(5865):939-943.
[34]  Garin F,Seyfried L,Girard P,et al. A skeletal rearrangement study of labeled butanes on a solid superacid catalyst :Sulfuric-acid treated zirconium-oxide[J]. Journal of Catalysis,1995,151(1):26-32.
[35]  Kalubarme R S,Park G E,Jung K H,et al. LaNixCo1-xO3-δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries[J]. Journal of The Electrochemical Society,2014,161:A880-A889.
[36]  Cravillon J,Munzer S,Lohmeier S J,et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework[J]. Chem. Mater.,2009,21(8):1410-1412.
[37]  Zhang G Q,Lou X W. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties[J]. Angew. Chem. Int. Ed.,2014,53(34):9041-9044.
[38]  Ren Y,Ma Z,Bruce P G. Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol[J]. Cryst. Eng. Comm.,2012,14(8):2617-2620.
[39]  Biddinger E J,Von Deak D,Ozkan U S. Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts[J]. Topics in Catalysis,2009,52(11):1566-1574.
[40]  Nattaporn Lohitharn,Edgar Lotero,James G Goodwin Jr,et al. A comprehensive mechanistic pathway for n-butane isomerization on sulfated zirconia[J]. Journal of Catalysis,2006,241(2):328-341.
[41]  康小珍,石琪,董晋湘. 微球状 ZIFs 材料(TIF-5Zn)的制备及稳定性[J]. 化工进展,2013,32(7):1604-1607.
[42]  杨伟,陈胜洲,邹汉波,等. 氮掺杂非贵金属氧还原催化剂研究进展[J]. 化工进展,2010,29(11):2085-2089. 浏览
[43]  Sickafus K E,Hughes R. Spinel compounds:Structure and property relations[J]. Journal of the American Ceramic Society,1998,82:3279-3292.
[44]  Wu F,Myung Y,Banerjee P. Rayleigh instability driven nodular Cu2O nanowires via carbothermal reduction of CuO nanowires[J]. Cryst. Growth Des.,2015,15(4):1588-1595.
[45]  Morris W,Doonan C J,Furukawa H,et al. Crystals as molecules:Postsynthesis covalent functionalization of zeolitic imidazolate frameworks[J]. J. Am. Chem. Soc.,2008,130(38):12626-12627.
[46]  Echizen Tsuneo,Suzuk Tetsuo,Kamiy Yuichi,et al. Mechanistic study on skeletal isomerization of n-butane using 1,4-13C2-n-butane on typical solid acids and their Pt-promoted bifunctional catalysts[J]. Journal of Molecular Catalysis A:Chemical,2004,209:145-153.
[47]  张丽. 原位固体核磁共振技术研究催化剂酸碱性质及正丁烷异构化反应[D]. 上海:复旦大学,2011.
[48]  Wang Y P,Pan A Q,Zhu Q Y,et al. Facile synthesis of nanorod-assem bled multi-shelled Co3O4 hollow microspheres for high-performance supercapacitors[J]. J. Power Sources,2014,272:107-112.
[49]  Brun N,Wohlgemuth S A,Osiceanu P,et al. Original design of nitrogen-doped carbon aerogels from sustainable precursors:Application as metal-free oxygen reduction catalysts[J]. Green Chem.,2013,15(9):2514-2524.
[50]  Yoon M,Srirambalaji R,Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis[J]. Chem. Rev.,2011,112(2):1196-1231.
[51]  Zhao Y X,Wang W T,Huo Z Y,et al. Hierarchical branched Cu2O nanowires with enhanced photocatalyticactivity and stability for H2 production[J]. Nanoscale,2014,6(1):195-198.
[52]  Zhou D L,Chen D J,Zhang P P,et al. Facile synthesis of MnO2-Ag hollow microspheres with sheet-like subunits and their catalytic properties[J]. Cryst. Eng. Comm.,2014,16(5):863-869.
[53]  董群,于婷,仇登可,等. 介孔过渡金属氧化物的合成研究进展[J]. 化工进展,2012,31(2):355-359.
[54]  刘勇军. 过渡金属硫化物催化稳态活性相[J]. 化工进展,2012,31(9):1968-1974.
[55]  Sui Y M,Zeng Y,Zheng W T,et al. Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties[J]. Sens. Actuators B,2012,171-172:135-140.
[56]  Sumida K,Rogow D L,Mason J A,et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev.,2011,112(2):724-781.
[57]  Liu L,Deng Q F,Hou X X,et al. User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry,2012,22(31):15540-15548.
[58]  Park K S,Ni Z,Cote A P,et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS,2006,103(27):10186-10191.
[59]  Ahmed M A. Surface characterization and catalytic activity of sulfated-hafnia promoted zirconia catalysts for n-butane isomerization[J]. Fuel Processing Technology,2011,92(5):1121-1128.
[60]  Hu P,Han N,Zhang X,et al. Fabrication of ZnO nanorod-assembled multishelled hollow spheres and enhanced performance in gas sensor[J]. J. Mater. Chem.,2011,21(37):14277-14284.
[61]  Li J R,Sculley J,Zhou H C. Metal-organic frameworks for separations[J]. Chem. Rev.,2011,112(2):869-932.
[62]  Wang B,Cote A P,Furukawa H,et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs[J]. Nature,2008,453(7192):207-212.
[63]  Xu Y Y,Jiao X L,Chen D R. PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes[J]. J. Phys. Chem. C,2008,112(43):16769-16773.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133