Yu M, Li Z, Xia Q, et al. Desorption activation energy of dibenzothiophene on the activated carbons modified by different metal salt solutions[J]. Chemical Engineering Journal, 2007, 132(1):233-239.
Zapata B, Pedraza F, Valenzuela M A. Catalyst screening for oxidative desulfurization using hydrogen peroxide[J]. Catalysis Today, 2005, 106(1):219-221.
[8]
Xiong L, Mei P. Synthesis and performance of mesoporous phosphotungstic acid/alumina composite as a novel oxidative desulfurization catalyst[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29(2):237-241.
[9]
Garcia-Gutierrez J L, Fuentes G A, Hernandez-Teran M E, et al. Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system:The effect of system parameters on catalytic activity[J]. Applied catalysis. A, General, 2008, 334(1):366.
Yan X M, Mei P, Lei J, et al. Synthesis and characterization of mesoporous phosphotungstic acid/TiO2 nanocomposite as a novel oxidative desulfurization catalyst[J]. Journal of Molecular Catalysis A:Chemical, 2009, 304(1):52-57.
Lei J, Chen L, Yang P, et al. Oxidative desulfurization of diesel fuel by mesoporous phosphotungstic acid/SiO2:The effect of preparation methods on catalytic performance[J]. Journal of Porous Materials, 2013, 20(5):1379-1385.
Fabián-Mijangos L, Cedeno-Caero L. V loading effect on V2O5/ZrO2 catalysts for oxidative desulfurization[J]. Industrial & Engineering Chemistry Research, 2010, 50(5):2659-2664.
[19]
Xie Ying, Huang Keming, Liang Chaolin. Oxidative desulfurization of diesel catalyst by supported Na2WO4/TiO2-Al2O3 catalyst[J]. Petroleum Refinery Engineering, 2011(10):21.
[20]
Cede?o-Caero L, Gomez-Bernal H, Fraustro-Cuevas A, et al. Oxidative desulfurization of synthetic diesel using supported catalysts:Part III. Support effect on vanadium-based catalysts[J]. Catalysis Today, 2008, 133:244-254.
Yu G X, Zhou R X, Li J B, et al. Oxidative removal of dibenzothiophene by H2O2 over activated carbon-supported phosphotungstic acid catalysts[J]. Advanced Materials Research, 2010, 132:126-132.
[24]
Rodrigues A K O, Ramos J E T, Cavalcante Jr C L, et al. Pd-loaded mesoporous silica as a robust adsorbent in adsorption/desorption desulfurization cycles[J]. Fuel, 2014, 126:96-103.
Li X, Huang S, Xu Q, et al. Preparation of WO3-SBA-15 mesoporous molecular sieve and its performance as an oxidative desulfurization catalyst[J]. Transition Metal Chemistry, 2009, 34(8):943-947.
[27]
Chamack M, Mahjoub A R, Aghayan H. Cesium salts of tungsten-substituted molybdophosphoric acid immobilized onto platelet mesoporous silica:Efficient catalysts for oxidative desulfurization of dibenzothiophene[J]. Chemical Engineering Journal, 2014, 255:686-694.
[28]
Li J, Hu B, Tan J, et al. Deep oxidative desulfurization of fuels catalyzed by molybdovanadophosphoric acid on amino-functionalized SBA-15 using hydrogen peroxide as oxidant[J]. Transition Metal Chemistry, 2013, 38(5):495-501.
[29]
Ali Abdalla Z E, Baoshan L I. Preparation of MCM-41 supported (Bu4N)4H3(PW11O39) catalyst and its performance in oxidative desulfurization[J]. Chemical Engineering Journal, 2012, 200:113-121.
[30]
Zhang M, Zhu W, Li H, et al. One-pot synthesis, characterization and desulfurization of functional mesoporous W-MCM-41 from POM-based ionic liquids[J]. Chemical Engineering Journal, 2014, 243:386-393.
[31]
Luo G, Kang L, Zhu M, et al. Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene[J]. Fuel Processing Technology, 2014, 118:20-27.
Song H Y, Li G, Wang X S, et al. Characterization and catalytic performance of Au/Ti-HMS catalysts on the oxidative desulphurization using in situ H2O2:Effect of method catalysts preparation[J]. Catalysis Today, 2010, 149(1):127-131.
[34]
Wang L, Cai H, Li S, et al. Ultra-deep removal of thiophene compounds in diesel oil over catalyst TiO2/Ni-ZSM-5 assisted by ultraviolet irradiating[J]. Fuel, 2013, 105:752-756.
Lu C, Fu H, Li H, et al. Oxidation-extraction desulfurization of model oil over Zr-ZSM-5/SBA-15 and kinetic study[J]. Frontiers of Chemical Science and Engineering, 2014, 8(2):203-211.