Yani S, Zhang D. An experimental study of sulphate transformation during pyrolysis of an Australian lignite[J]. Fuel Proceeding Technology, 2010, 91(3):313-321.
[3]
Corradi A B, Leonelli C, Manfredini T, et al. Quantitative determination of pyrite in ceramic clay raw materials by DTA[J]. Thermochimica Acta, 1996, 287(1):101-109.
[4]
Boyabat N, ?zer A K, Bayrakc S, et al. Thermal decomposition of pyrite in the nitrogen atmosphere[J]. Fuel Process Technology, 2004, 85:179-188.
[5]
Cheng H F, Liu Q F, Huang M, et al. Application of TG-FTIR to study SO2 evolved during the thermal decomposition of coal-derived pyrite[J]. Thermochimica Acta, 2013, 555:1-6.
[6]
Loría-Bastarrachea M, Herrera-Kao W, Cauich-Rodríguez J, et al. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone)[J]. J. Therm. Anal. Calorim., 2011, 104:737-742.
Duan L B, Zhao C S, Zhou W, et al. Sulfur evolution from coal combustion in O2/CO2 mixture[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86:269-273.
[12]
Bhargava S K, Garg A, Subasinghe N D. In situ high-temperature phase transformation studies on pyrite[J]. Fuel, 2009, 88:988-993.
[13]
Pat Skhonde M, Henry Matjie R, Reginald Bunt J, et al. Sulfur behavior in the sasol-lurgi fixed-bed dry-bottom gasification process[J]. Energy & Fuels, 2009, 23:229-235.
[14]
Li F H, Huang J J, Fang Y T, et al. Mineral behavior of low-temperature lignite ashes under gasification atmosphere[J]. Korean J. Chem. Eng., 2013, 30(3):605-612.
Mehring M, Elsener M, Kr?cher O. Development of a TG-FTIR system for investigations with condensable and corrosive gases[J]. J. Therm. Anal. Calorim., 2011, 105:545-552.