全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

合成气制混合燃料醇的研究进展

DOI: 10.16085/j.issn.1000-6613.2015.05.015, PP. 1269-1276

Keywords: 合成气,混合醇,工艺,催化剂

Full-Text   Cite this paper   Add to My Lib

Abstract:

合成气直接转化制混合燃料醇等清洁燃料是能源化工领域的研究热点,过程涉及醇合成和费托合成步骤,体系非常复杂,而高性能催化剂和高效分离工程的开发是混合燃料醇工艺大规模应用的关键技术.本文综述了合成气制混合燃料醇的典型反应工艺和当前催化剂的最新研究进展,系统总结了改性甲醇合成、改性费托合成、硫化物及其他类型催化剂体系的研究现状,指出通过调控活性相结构与组成、提高催化剂稳定性和产物中混合醇的选择性是合成气制混合醇催化剂的发展方向,提出了通过多反应、多过程耦合实现合成气定向转化制混合醇及C2+醇的应用前景.

References

[1]  葛庆杰,徐恒泳,李文钊. 煤层气经合成气制液体燃料的关键技术[J]. 化工进展,2009,28(6):917-921. 浏览
[2]  李德宝,马玉刚,齐会杰,等. CO加氢合成低碳混合醇催化体系研究新进展[J]. 化学进展,2004,16(4):584-592.
[3]  李文怀,马玉刚,张侃,等. 煤基合成气合成低碳醇进展[J]. 煤化工,2003(5):12-15.
[4]  傅挺进. 合成气制低碳醇的经济性分析[J]. 泸天化科技,2013(4):271-273.
[5]  士丽敏,储伟,刘增超. 合成气制低碳醇用催化剂的研究进展[J]. 化工进展,2011,30(1):162-166. 浏览
[6]  马建兵,郑学明,尚会建,等. 低碳醇合成催化剂研究进展[J]. 化工进展,2008,27(s1):269-272.
[7]  门秀杰,崔德春,于广欣,等. 合成气制低碳醇技术在中国的研究进展及探讨[J]. 现代化工,2013,33(12):21-23.
[8]  宁文生,张伟,金杨福,等. 用于低碳混合醇合成的Fe/CuZnSi催化剂研究[J]. 现代化工,2013,33(10):66-69.
[9]  苏艳敏,郑化安,付东升,等. Cu-Fe基催化剂在煤基合成气制低碳混合醇中的应用[J]. 洁净煤技术,2013,19(5):68-73.
[10]  高旭敏. 碳纳米管促进的Co-Cu氧化物基低碳醇合成催化剂的制备研究[D]. 厦门:厦门大学,2007.
[11]  张建国,宋昭峥,史德文,等. 合成气合成低碳混合醇技术的研究[J]. 现代化工,2007,27(2):494-496.
[12]  黄学庆,徐明霞,李学福,等. 合成气制低碳混合醇催化剂研究进展[J]. 石油与天然气化工,2001,30(4):167-171.
[13]  山西煤化所. “合成气制低碳混合醇新型催化剂及配套工艺技术”取得重大突破[EB/OL]. [2011-01-06]. http://www.sxicc.ac.cn/xwzx/ kydt/201101/t20110106_3055045.html.
[14]  神华煤制油合成气制混合醇装置打通全程[EB/OL]. [2014-09-24]. http://www.coalstudy.com/news/dlhgzx/hg/4875.html.
[15]  魏双绍. 低碳混合醇研究现状及开发建议[J]. 天然气化工,1990,15(6):49-55.
[16]  殷玉圣,赵丰刚,张皓. 合成气合成低碳醇Cu系催化剂的研究[J]. 化学反应工程与工艺,2000,16(4):344-349.
[17]  Hoflund G B,Epling W S,Minahan D M. Reaction and surface characterization study of higher alcohol synthesis catalysts Ⅻ:K and Pd promoted Zn/Cr/Mn spinel[J]. Catalysis Today,1999,52(1):99-109.
[18]  Jiang T,Niu Y,Zhong B. Synthesis of higher alcohols from syngas over Zn-Cr-K catalyst in supercritical fluids[J]. Fuel Process Technology,2001,73(3):175-183.
[19]  姜涛,牛玉琴,钟炳. 在Zn-Cr催化剂上超临界相合成低碳醇的链增长机理[J]. 燃料化学学报,2000,28(2):101-104.
[20]  Hilmen A M,Xu M,Gines M J L,et al. Synthesis of higher alcohols on copper catalysts supported on alkali-promoted basic oxides[J]. Appl. Catal. A:General,1998,169(2):355-372.
[21]  Majocchi L,Lietti L,Beretta A,et al. Synthesis of short chain alcohols over a Cs-promoted Cu/ZnO/Cr2O3 catalyst[J]. Appl. Catal. A:General,1998,166(2):393-405.
[22]  Camposmartin J M,Guerreroruiz A,Fierro J LG. Structural and surface properties of CuO-ZnO-Cr2O3 catalysts and their relationship with selectivity to higher alcohol synthesis[J]. Journal of Catalysis,1995,156(2):208-218.
[23]  郭伟,高文桂,王华,等. Fe添加对Cu/Zn/ZrO2催化剂CO2加氢合成低碳醇性能的影响[J]. 材料导报B,2013,27(10):44-47.
[24]  Ding M,Qiu M,Wang T,et al. Effect of iron promoter on structure and performance of CuMnZnO catalyst for higher alcohols synthesis[J]. Applied Energy,2012,97:543-547.
[25]  房德仁,李婉君,刘中民,等. Cu-Co合成低碳醇催化剂的性能[J]. 精细石油化工,2014,31(3):21-26.
[26]  房德仁,李婉君,刘中民,等. Cu-Fe合成低碳醇催化剂性能研究[J].工业催化,2013,21(7):39-44.
[27]  房德仁,李婉君,刘中民,等. 老化时间对Cu-Co合成低碳醇催化剂性能的影响[J]. 工业催化,2013,21(9):38-42.
[28]  房德仁,李婉君,赵金波,等. 加料方式对Cu-Co合成低碳醇催化剂性能的影响[J]. 工业催化,2014,22(3):199-205.
[29]  Zhang H,Liang X,Dong X,et al. Multi-walled carbon nanotubes as a novel promoter of catalysts for CO/CO2 hydrogenation to alcohols[J]. Catalysis Surveys from Asia,2009,13(1):41-58.
[30]  Dong X,Liang X,Li H,et al. Preparation and characterization of carbon nanotube-promoted Co-Cu catalyst for higher alcohol synthesis from syngas[J]. Catalysis Today,2009,147(2):158-165.
[31]  韩涛,黄伟,王晓东,等. Ce-Cu-Co/CNTs催化剂催化合成气制低碳醇及乙醇的研究[J]. 物理化学学报,2014,30(11):2127-2133.
[32]  Lee J H,Reddy K. H,Jung J S,et al. Role of support on higher alcohol synthesis from syngas[J]. Applied Catalysis A:General,2014,480:128-133.
[33]  Prieto G,Beijer S,Smith M L. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angew Chem. Int. Ed.,2014,53(25):6397-6401.
[34]  Liu G,Geng Y,Pan D,et al. Bi-metal Cu-Co from LaCo1-xCuxO3 perovskite supported on zirconia for the synthesis of higher alcohols[J]. Fuel Processing Technology,2014,128:289-296.
[35]  Fang Y,Liu Y,Deng W,et al. Cu-Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas[J]. Journal of Energy Chemistry,2014,23(4):527-534.
[36]  徐润,马中义,杨成,等. Mn助剂对CuFeZrO2低碳醇合成催化剂的修饰作用[J]. 物理化学学报,2003,19(5):423-427.
[37]  Chen H,Lin J,Tan K,et al. Comparative studies of manganese-doped copper-based catalysts:The promotereffect of Mn on methanol synthesis[J]. Applied Surface Science,1998,126(3/4):323-331.
[38]  陈小平,吴贵升,孙予罕,等. CO加氢合成甲醇Cu-Mn/ZrO2催化剂反应性能的研究[J]. 天然气化工,1998,23(5):1-4.
[39]  Ding M Y,Qiu M H,Liu J G,et al. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for higher alcohols synthesis[J]. Fuel,2013,109(1):21-27.
[40]  林明桂,房克功,李德宝,等. Zn、Mn助剂对CuFe合成低碳醇催化剂的影响[J]. 物理化学学报,2008,24(5):833-838.
[41]  罗彩容,熊莲,郭海军,等. 碱金属对CO加氢制备低碳醇Cu-Fe-Co基催化剂的影响[J].高校化学工程学报,2012,26(5):823-828.
[42]  毛东森,郭强胜,俞俊,等. Ce添加对Cu-Fe/SiO2催化合成气制低碳醇性能的影响[J]. 物理化学学报,2011,27(11):2639-2645.
[43]  李怀峰. CuFe系催化剂上CO加氢合成低碳混合醇的研究[D]. 太原:中国科学院山西煤炭化学研究所,2003.
[44]  郭强胜,毛东森,俞俊,等. 不同载体对负载型Cu-Fe催化剂CO加氢反应性能的影响[J]. 燃料化学学报,2012,40(9):1103-1109.
[45]  Gao W,Zhao Y,Liu J,et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal. Sci. Technol.,2013,3:1324-1332.
[46]  Lu Y,Cao B,Yu F,et al. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe Catalysts[J]. Chem. Cat. Chem.,2014,6(2):473-478.
[47]  Ding M,Liu J,Zhang Q,et al. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis[J]. Catalysis Communications,2012,28:138-142.
[48]  Ding M,Tu J,Liu J,et al. Copper-iron supported bimodal pore catalyst and its application for higher alcohols synthesis[J]. Catalysis Today,2014,234:278-284.
[49]  Kiatphuengporn S,Chareonpanich M,Limtrakul J. Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe-Cu catalysts for CO2 hydrogenation[J]. Chemical Engineering Journal,2014,240:527-533.
[50]  Surisetty V R,Hu Y,Dalai A K,et al. Structural characterization and catalytic performance of alkali (K) and metal (Co and Rh)-promoted MoS2 catalysts for higher alcohols synthesis[J]. Applied Catalysis A:General,2011,392:166-172.
[51]  Morrill M R,Thao N T,Agrawal P K,et al. Mixed MgAl oxide supported potassium promoted molybdenum sulfide as a selective catalyst for higher alcohol synthesis from syngas[J]. Catal. Lett.,2012,142:875-881.
[52]  Surisetty V R,Eswaramoorthi I,Dalai A K. Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali-modified MoS2 catalysts promoted with group VIII metals[J]. Fuel,2012,96:77-84.
[53]  Xiao H,Li D,Li W,et al. Study of induction period over K2CO3/MoS2 catalyst for higher alcohols synthesis[J]. Fuel Processing Technology,2010,91:383-387.
[54]  Qi H,Li D,Yang C,et al. Nickel and manganese co-modified K/MoS2 catalyst:High performance for higher alcohols synthesis from CO hydrogenation[J]. Catalysis Communications,2003,4(7):339-342.
[55]  马晓明,林国栋,张鸿斌. 碳纳米管促进的Co-Mo-K硫化物基催化剂用于合成气制低碳混合醇[J]. 催化学报,2006,27(11):1019-1027.
[56]  Wang J,Xie J,Huang Y,et al. An efficient Ni-Mo-K sulfide catalyst doped with CNTs for conversion of syngas to ethanol and higher alcohols[J]. Applied Catalysis A:General,2013,468:44-51.
[57]  Surisetty V R,Tavasoli A,Dalai A K. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Applied Catalysis A:General,2009,365:243-251.
[58]  Claure M T,Chai S,Dai S,et al. Tuning of higher alcohol selectivity and productivity in CO hydrogenation reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed MgAl oxide[J]. Journal of Catalysis,2015,324:88-97.
[59]  Ellgen P C,Batley W J,Bhasin M M,et al.Rhodium based catalysts for conversion of synthesis gas to two-carbon chemical[J]. Adv. Chem. Ser.,1979,178:147-157.
[60]  Ojeda M,Lopez G M,Rojas S,et al. Influence of residual chloride ions in the CO hydrogenation over Rh/SiO2 catalysts[J]. J. Mol. Catal. A:Chem.,2003,202:179-186.
[61]  Lee G V D,Ponec R. On some problems of selectivity in syngas reactions on the group VIII metals[J]. Catal. Rev. Sci. Eng.,1987,29:183.
[62]  Chen G C,Gao C Y,Huang Z J,et al. Synthesis of ethanol from syngas over iron promoted Rh immobilized on modified SBA-15 molecular sieve:Effect of iron loading[J]. Chem. Eng. Res. Des.,2011,89:249-253.
[63]  Mo X,Gao J,Goodwin Jr J G. Role of promoters on Rh/SiO2 in CO hydrogenation:A comparison using DRIFTS[J]. Catal. Today,2009,147:139-149.
[64]  江海有,刘金波,蔡启瑞. 合成气制乙醇催化反应机理述评[J]. 分子催化,1994,8(6):472-480.
[65]  马洪涛,王毅,包信和. 合成气制备乙醇Rh-Mn/SiO2催化剂中活性金属表面结构的表征研究[J]. 北京大学学报:自然科学版,2001,37(2):210-214.
[66]  唐宏青. 合成乙醇新技术展望[J]. 中氮肥,2012(2):1-6.
[67]  Xiang M,Li D,Li W,et al. Performances of mixed alcohols synthesis over potassium promoted molybdenum carbides[J]. Fuel,2006,85(17-18):2662-2665.
[68]  Xiang M,Li D,Li W,et al. K/Fe/β-Mo2C:A novel catalyst for mixed alcohols synthesis from carbon monoxide hydrogenation[J]. Catal. Commun.,2007,8(1):88-90.
[69]  Xiang M,Li D,Xiao H,et al. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/β-Mo2C catalysts[J]. Fuel,2008,87(4-5):599-603.
[70]  Wang N,Fang K,Jiang D,et al. Iron carbide promoted K/β-Mo2C for higher alcohols synthesis[J]. Catal. Today,2010,158(3-4):241-245.
[71]  王宁,房克功,林明桂,等. 钾改性铁-钼碳化物CO加氢合成低碳混合醇的研究[J]. 天然气化工,2010,35:6-9.
[72]  赵立红,闫捷,房克功,等. 纳米β-Mo2C催化剂的制备及K改性对合成低碳醇反应性能的影响[J]. 工业催化,2014,22(7):515-520.
[73]  向明林,李德宝,肖海成,等. 新型K/α-MoC1-x催化剂CO加氢合成低碳混合醇的研究[J]. 燃料化学学报,2006,34(5):595-599.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133