全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工进展  2015 

普通小球藻固定模拟烟气中CO2的实验研究

DOI: 10.16085/j.issn.1000-6613.2015.04.043, PP. 1147-1151

Keywords: 普通小球藻,CO2,细胞密度,平均固碳速率

Full-Text   Cite this paper   Add to My Lib

Abstract:

大气中CO2浓度增加造成的全球变暖已成为一个严峻的环境问题,利用微藻生物固碳法减排CO2正成为研究热点.本文以普通小球藻(Chlorellavulgaris,FACHB-1227)为研究对象,采用SE无碳培养基,在沿程曝气型套管式光生物反应器中通入含不同体积分数CO2(5%、10%、15%和20%)的模拟烟气培养小球藻,培养周期为17天,以细胞密度和平均固碳速率为检测指标,研究模拟烟气下普通小球藻生长情况及固碳能力.实验结果表明当模拟烟气中CO2体积分数为10%时,普通小球藻的细胞密度达到最大值8.76×106cells/mL,相比于5%组、15%组和20%组分别提高了54.23%、66.86%和76.97%;其平均固碳速率达最大值30.18mg/(L?d),较5%组、15%组和20%组分别提高了57.27%、70.89%和81.91%.可见,在模拟烟气中CO2体积分数为10%时,普通小球藻的生长情况和固碳性能最好.

References

[1]  Arata S,Strazza C,Lodi A,et al. Spirulina platensis culture with flue gas feeding as a cyanobacteria‐based carbon sequestration option[J]. Chemical Engineering & Technology,2013,36(1):91-97.
[2]  Chiu S-Y,Tsai M-T,Kao C-Y,et al. The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal[J]. Engineering in Life Sciences,2009,9(3):54-260.
[3]  Abu-khader Mazen M. Recent progress in CO2 capture/sequestration:A review[J]. Energy Sources Part A:Recovery Utilization and Environmental Effects,2006,28(14):1261-1279.
[4]  宋成军,董保成,赵立欣,等. 纯二氧化碳条件下小球藻固定CO2[J]. 环境工程学报,2012,6(12):4566-4572.
[5]  宋存义,周向. 捕集低浓度二氧化碳的化学吸收工艺及其综合比较[J]. 环境工程学报,2012,6(1):1-8.
[6]  李新宇,唐海萍. 陆地植被的固碳功能与适用于碳贸易的生物固碳方式[J]. 植物生态学报,2006,30(2):200-209.
[7]  刘明升,魏群,蔡元妃,等. 六种微藻固定CO2实验研究[J]. 广西大学学报:自然科学版,2012,37(3):544-548.
[8]  Wang B,Li Y,Wu N,et al. CO2 bio-mitigation using microalgae[J]. Appl. Microbiol. Biotechnol.,2008,79(5):707-718.
[9]  Phukan M M,Chutia R S,Konwar B K,et al. Microalgae Chlorella as a potential bio-energy feedstock[J]. Applied Energy,2011,88(10):3307-3312.
[10]  都基峻,曾萍,石应杰,等. 模拟烟气条件下野生混合微藻的培养[J]. 环境科学研究,2010,23(3):366-370.
[11]  Concas A,Pisu M,Cao G. Mathematical modelling of Chlorella Vulgaris growth in semi-batch photobioreactors fed with pure CO2[J]. Chemical Engineering Transactions,2013,32:1021-1026.
[12]  张一昕,赵兵涛,熊锴彬,等. 微藻固定燃烧烟气中CO2的研究进展[J]. 生物工程学报,2011,27(2):164-171.
[13]  Jacob-lopes E,Gimenes Scoparo C H,Franco T T. Rates of CO2 removal by a Aphanothece microscopica Nageli in tubular photobioreactors[J]. Chemical Engineering and Processing,2008,47(8):1371-1379.
[14]  Kunjapur A M,Eldridge R B. Photobioreactor design for commercial biofuel production from microalgae[J]. Industrial & Engineering Chemistry Research,2010,49(8):3516-3526.
[15]  吴良柏,李震,宋耀祖. 螺旋管式光生物反应器的研究[J]. 工程热物理学报,2010,31(8):1375-1378.
[16]  张毅,费晓雯,彭世清,等. 4 种不同培养基对小球藻 Chlorella spp. 生长和油脂累积的影响[J]. 热带作物学报,2010,31 (8):1340-1345.
[17]  Ragauskas A J,Williams C K,Davison B H,et al. The path forward for biofuels and biomaterials[J]. Science,2006,311(5760):484-489.
[18]  Go S,Lee SJ,Jeong GT,et al. Factors affecting the growth and the oil accumulation of marine microalgae,Tetraselmis suecica[J]. Bioprocess and Biosystems Engineering,2012,35(1-2):145-150.
[19]  Das P,Aziz S S,Obbard J P. Two phase microalgae growth in the open system for enhanced lipid productivity[J]. Renewable Energy,2011,36(9):2524-2528.
[20]  Jacob-lopes E,Gimenes Scoparo C H,Cacia Ferreira Lacerda L M,et al. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors[J]. Chemical Engineering and Processing,2009,48(1):306-310.
[21]  He Jiankun,Zhang Aling,Ye Yong. Technology options for CO2 mitigation in China[J]. Ambio,1996,25(4):249-253.
[22]  巩三强.模拟烟道气对小球藻Chlorella sorokiniana CS-01生长及脂质累积影响的研究[D].长沙:中南大学,2012.
[23]  徐强.藻类吸收和固定烟气中的CO2的研究[D].太原:太原理工大学,2010.
[24]  王翠,李环,王钦琪,等. pH 值对沼液培养的普通小球藻生长及油含量积累的影响[J]. 生物工程学报,2010,26(8):1074-1079.
[25]  吕梦梦. 普通小球藻培养过程中pH条件优化的实验研究[D]. 天津:天津大学,2012.
[26]  Wang J,Han D,Sommerfeld M,et al. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor[J]. Journal of Applied Phycology,2013,25(1):253-260.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133