Liu J, Detrembleur C, Hurtgen M, et al. Thermo-responsive gold/poly(vinyl alcohol)-b-poly(N-vinylcaprolactam) core-corona nanoparticles as a drug delivery system[J]. Polymer Chemistry, 2014, 5: 5289-5299.
[4]
Schattling P, Jochum D F, Theato P. Multi-responsive copolymers: Using thermo-, light-and redox stimuli as three independent inputs towards polymeric information processing[J]. Chemical Communications, 2011, 47: 8859-8861.
[5]
Li G Y, Guo L, Wen Q W, et al. Thermo-and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release[J]. International Journal of Biological Macromolecules, 2013, 55: 69-74.
[6]
Lu Y, Sun W J, Gu Z. Stimuli-responsive nanomaterials for therapeutic protein delivery[J]. Journal of Controlled Release, 2014, 194: 1-19.
[7]
Islam R M, Gao Y F, Li X, et al. Stimuli-responsive polymeric materials for human health applications[J]. Chinese Science Bulletin, 2014, 59(32): 4237-4255.
[8]
Hu J M, Liu S Y. Engineering responsive polymer building blocks with Host-Guest molecular recognition for functional applications[J]. Accounts of Chemical Research, 2014, 47: 2084-2095.
[9]
Wu X W, Chen X F, Guan H Y, et al. A recyclable thermo-responsive catalytic system based on poly(N-isopropylacrylamide)-coated POM@SBA-15 nanospheres[J]. Catalysis Communications, 2014, 51: 29-32.
[10]
Xue B L, Gao L C, Hou Y P, et al. Temperature controlled water/oil wettability of a surface fabricated by a block copolymer: Application as a dual water/oil on-off switch[J]. Advanced Materials, 2013, 25: 273-277.
[11]
Schild G H. Poly(N-isopropylacrylamide): Experiment, theory and application[J]. Progress in Polymer Science, 1992, 17: 163-249.
[12]
Nakayama M, Okano T. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths[J]. Biomacromolecules, 2005, 6: 2320-2327.
[13]
Chen G H, Haffman S A. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH[J]. Nature, 2014, 5: 2961-2972.
[14]
Li Q L, Gao C Q, Li S T, et al. Doubly thermo-responsive ABC triblock copolymer nanoparticles prepared through dispersion RAFT Polymerization[J]. Polymer Chemistry, 2014, 5: 2961-2972.
[15]
Zhou C, Qian S S, Li X J, et al. Synthesis and characterization of well-defined PAA-PEG multi-responsive hydrogels by ATRP and click chemistry[J]. Royal Society of Chemistry Advances, 2014, 4: 54631-54640.
[16]
Abdellaoui-Arous N, Djadoun S. Poly[2-(N,N-dimethylamino) ethyl methacrylate]/poly(styrene-co-methacrylic acid) interpolymer complexes[J]. Macromolecular Symposium, 2011, 303: 123-133.
[17]
Liu R, Liao P H, Liu J K, et al. Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release[J]. Langmuir, 2011, 27: 3095-3099.
[18]
Schumers J M, Fustin C A, Gohy J F. Light-responsive block copolymers[J]. Macromolecular Rapid Communications, 2010, 31: 1588-1607.
[19]
Son S, Shin E, Kim B-S. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery[J]. Biomacromolecules, 2014, 15: 628-634.
[20]
Zhao H, Sterner S E, Coughlin B E, et al. o-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science[J]. Macromolecules, 2012, 45, 1723-1736.
[21]
Schumers J M, Bertrand O, Fustin C A, et al. Synthesis and self-assembly of diblock copolymers bearing 2-nitrobenzyl photocleavable side groups[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50: 599-608.
[22]
Theato P. One is enough: Influencing polymer properties with a single chromophoric unit[J]. Angewandte Chemie International Edition, 2011, 50: 5804-5806.
[23]
Bapat P A, Ray G J, Savin A D, et al. Redox-responsive dynamic-covalent assemblies: Stars and miktoarm stars[J]. Macromolecules, 2013, 46: 2188-2198.
[24]
Oyaizu K, Nishide H. Radical polymers for organic electronic devices: A radical departure from conjugated polymers[J]. Advanced Materials, 2009, 21: 2339-2344.
[25]
Egawa Y, Miki R, Seki T. Colorimetric sugar sensing using boronic acid-substituted azobenzenes[J]. Materials, 2014, 7: 1201-1220.
[26]
Vancoillie G, Pelz S, Holder E, et al. Direct nitroxide mediated (co)polymerization of 4-vinylphenylboronic acid as route towards sugar sensors[J]. Polymer Chemistry, 2012, 3: 1726-1729.
[27]
Yan Q, Zhou R, Fu C K, et al. CO2-responsive polymeric vesicles that breathe[J]. Angewandte Chemie International Edition, 2011, 50: 4923-4927.
[28]
Han D, Boissiere O, Kumar S, et al. Two-way CO2-switchable triblock copolymer hydrogels[J]. Macromolecules, 2012, 45: 7440-7445.
[29]
Chen P Y, Chen J Y, Cao Y. Self-assembly behavior of thermo-and pH-responsive diblock copolymer of poly(N-isopropylacrylamide)-block-poly(acrylic acid) synthesized via reversible addition-fragmentation chain transfer polymerization[J]. Journal of Macromolecular Science Pure and Applied Chemistry, 2013, 50: 478-486.
[30]
Jiang X Y, Lu G L, Feng C, et al. Poly(acrylic acid)-graft-poly(N-vinylcaprolactam): A novel pH and thermo dual-stimuli responsive system[J]. Polymer Chemistry, 2013, 4: 3876-3884.
[31]
Bütün V, Armes P S, Billingham C N. Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers[J]. Polymer, 2001, 42: 5993-6008.
[32]
Zhao Y, Shi X B, Gao H Y, et al. Thermo-and pH-sensitive polyethylene-based diblock and triblock copolymers: Synthesis and self-assembly in aqueous solution[J]. Journal of Materials Chemistry, 2012, 22: 5737-5745.
[33]
Kungwatchakun D, Irie M. Photoresponsive polymers: Photocontrol of the phase separation temperature of aqueous solutions of poly-[N-isopropylacrylamide-co-N-(4-phenylazophenyl) acrylamide][J]. Makromolekulare Chemie, Rapid Communications, 1988, 9: 243-246.
[34]
Akiyama H, Tamaoki N. Polymers derived from N-isopropylacrylamide and azobenzene-containing acrylamides: Photoresponsive affinity to water[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42: 5200-5214.
[35]
Blasco E, Schmidt V K J B, Barner-Kowollik C, et al. Dual thermo-and photo-responsive micelles based on miktoarm star polymers[J]. Polymer Chemistry, 2013, 4: 4506-4514.
[36]
Kuramoto N, Shishido Y, Nagai K. Thermosensitive and redox-active polymers: Preparation and properties of poly(N-ethylacrylamide-co-vinylferrocene) and poly(N,N-diethylacrylamide-co-vinylferrocene) [J]. Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35: 967-1972.
[37]
Schmidt V K J B, Elbert J, Barner-Kowollik C, et al. Individually addressable thermo-and redox-responsive block copolymers by combining anionic polymerization and RAFT protocols[J]. Macromolecular Rapid Communications, 2014, 35: 708-714.
[38]
Phillips J D, Gibson I M. Degradable thermoresponsive polymers which display redox-responsive LCST behaviour[J]. Chemical Communications, 2012, 48: 1054-1056.
Wang L, Li Y K, Xu Y Q, et al. A facile construction method for pH and oxidation dual-responsive assembly based on ferrocene-modified chitooligosaccharide[J]. Reactive and Functional Polymers, 2014, 76: 1-7.
[41]
Ding J X, Xiao C S, Yan L S, et al. pH and dual redox responsive nanogel based on poly(l-glutamic acid) as potential intracellular drug carrier[J]. Journal of Controlled Release, 2011, 152: e1-e132.
[42]
Tang X D, Liang X C, Gao L C, et al. Water-soluble triply-responsive homopolymers of N,N-dimethylaminoethyl methacrylate with a terminal azobenzene moiety[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48: 2564-2570.
[43]
Achilleos S D, Vamvakaki M. Multiresponsive spiropyran-based copolymers synthesized by atom transfer radical polymerization[J]. Macromolecules, 2010, 43: 7073-7081.
[44]
Sumaru K, Kameda M, Kanamori T, et al. Characteristic phase transition of aqueous solution of poly(N-isopropylacrylamide) functionalized with spirobenzopyran[J]. Macromolecules, 2004, 37: 4949-4955.
[45]
Zhang J, Liu H J, Yuan Y, et al. Thermo-, pH-, and light-responsive supramolecular complexes based on a thermoresponsive hyperbranched polymer[J]. American Chemical Society Macro Letters, 2013, 2: 67-71.
[46]
Dong J, Wang Y N, Zhang J, et al. Multiple stimuli-responsive polymeric micelles for controlled release[J]. Soft Matter, 2013, 9: 370-373.
[47]
Wu H, Dong J, Li C C, et al. Multi-responsive nitrobenzene-based amphiphilic random copolymer assemblies[J]. Chemical Communications, 2013, 49: 3516-3518.
[48]
Yuan W Z, Guo W, Zou H, et al. Tunable thermo-, pH-and light-responsive copolymer micelles[J]. Polymer Chemistry, 2013, 4: 3934-3937.
[49]
Alvarez-Rodríguez R, Arias J F, Santos M, et al. Gold tailored photosensitive elastin-like polymer: Synthesis of temperature, pH and UV-vis sensitive probes[J]. Macromolecular Rapid Communications, 2010, 31: 568-573.
[50]
Schattling P, Jochum D F, Theato P. Multi-responsive copolymers: Using thermo-, light-and redox stimuli as three independent inputs towards polymeric information processing[J]. Chemical Communications, 2011, 47: 8859-8861.
[51]
Huang X G, Jiang X L, Yang Q Z, et al. Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery[J]. Journal of Materials Chemistry B, 2013, 1: 1860-1868.
[52]
Jiang X, Feng C, Lu G L, et al. Thermoresponsive homopolymer tunable by pH and CO2[J]. American Chemical Society Macro Letters, 2014, 3: 1121-1125.