全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双聚类的关联规则挖掘方法

Keywords: 双聚类,关联规则,频繁集,基因表达数据

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了使所有关联规则算法都可用于双聚类挖掘,将双聚类问题转化为关联规则的频繁集挖掘问题.在为双聚类挖掘提供大量算法的同时,不但能获得双聚类,而且还能得到额外的双聚类关联信息.基因表达数据的实验结果证明了其有效性.

References

[1]  MADEIRA S,OLIVERIRA A.Biclustering algorithms for biological data analysis:a survey[J].IEEE/ACM Trans Comput Biol Bioinf,2004(8):24-45.
[2]  LIN Wei-yang,SERGIO A,CAROLINA Ruiz.Efficient adaptive-support association rule mining for recommender systems [J].Data Mining and Knowledge Discovery,2002,9(1):85-105.
[3]  ZAKI M J,PARTHASARATHY S,OGIHARA M,et al.Parallel algorithm for discovery of association rules[J].Data Mining and Knowledge Discovery,1997(1):343-374.
[4]  CHENG Yi-zong,GEORGE M Church.Biclustering of expression data[C]// Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology(ISMB00).Menlo Park,California:The AAAI Press,2000:93-103.
[5]  AGRAWALR,IMIELINSKI T,SWAMI A.Mining association rules between sets of items in large database[C]// Proceeding of the ACM SIGMOD International Conference on Management of Data.Washington,D C:ACM,1993:207- 216.
[6]  ADAMO J.Data mining for association rules and sequential patterns[M].Berlin:Springer,2001.
[7]  HAN J,KAMBER M.Data mining concepts and technique[M].Sanfrancisco:Morgan Kaufmann,2001.
[8]  AMELA Prelic',STEFAN Bleuler.A systematic comparison and evaluation of biclustering methods for gene expression data[J]. Bioinformatics,2006,22(9):1122-1129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133