全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于差异性激活方法的改进微粒群算法

Keywords: 微粒群优化算法,全局优化,激活方法,进化计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对标准微粒群优化算法的惯性权重系数采用固定或线性递减的方式无法有效解决粒子陷入局部最优解的问题及可能出现的停滞现象,引入以差异性为基础的激活方法对微粒群算法进行改进.在每次迭代时算法可以动态调整惯性权重参数及粒子的活性,从而促进粒子收敛至全局最优解.对6种典型函数的实验结果表明,引入本文的激活方法后,改善了微粒群算法的开发和探索能力,并提高了其收敛速度及精度,其中以非线性惯性权值递减策略的微粒群算法最为明显.

References

[1]  KENNEDY J,EBERHART R C.Particle swarmoptimization[C]∥Proceedings of IEEE InternationalConference on Neural Networks.Piscataway,N J:IEEEPress,1995:1942-1948.
[2]  KENNEDY J,EBERHART R C,SHI Y.Swarmintelligence[M].San Francisco:Morgan KaufmannPublishers,2001:23-29.
[3]  PARSOPOULOS K E,PAPAGEORGIOU E I,GROUMPOS P P,et al.A first study of fuzzy cognitivemaps learning using particle swarm optimization[C]∥Proceedings of IEEE Congress on EvolutionaryComputation.Canbella:IEEE Press,2003:1440-1447.
[4]  VENAYAGAMOORTHY G K,DOCTOR S.Navigation ofmobile sensors using PSO and embedded PSO in a fuzzylogic controller[C]∥Proceedings of the 39th IEEE IASAnnual Meeting on Industry Applications.Seattle:IEEEPress,2004:1200-1206.
[5]  刘双全,邹立峰,张海龙,等.基于改进粒子群的水火电力系统发电调度[J].水电能源科学,2010,28(7):153-156.LIU Shuang-quan,ZOU Li-feng,ZHANG Hai-long,et al.Hydrothermal generation scheduling based on enhancedPSO[J].Water Resources and Power,2010,28(7):153-156.(in Chinese)
[6]  RAMAWEERA A,HALGARNUGE S K.Self-organizinghierarchical particle swarm optimizer with time-varyingacceleration coefficients[J].IEEE Transactions onEvolutionary Computation,2004,8(3):240-255.
[7]  NAKAGAWA N,ISHIGAME A,YASUDA K.Particleswarm optimization with velocity control[J].IEEETransactions on Electrical and Electronic Engineering,2009,4(1):130-132.
[8]  LI J,XIAO X P.Multi-swarm and multi-best particleswarm optimization[C]∥Proc of 7th IEEE World Congresson Intelligent Control and Automation.Chongqing:IEEEPress,2008:6281-6286.
[9]  高鹰,姚振坚,谢胜利.基于种群密度的粒子群优化算法[J].系统工程与电子技术,2006,28(6):922-924.GAO Ying,YAO Zhen-jian,XIE Sheng-li.Particle swarmoptimization algorithm based on population density[J].Systems Engineering and Electronics,2006,28(6):922-924.(in Chinese)
[10]  LIANG J J,QIN A K,SUGANTHAN P N,et al.Comprehensive learning particle swarm optimizer forglobal optimization of multimodal functions[J].IEEETransactions on Evolutionary Computation,2006,10(3):281-295.
[11]  SENTHIL M,ARUMUGAM Y,RAO V C.On theperformance of the particle swarm optimization algorithmwith various inertia weight variants for computing optimalcontrol of a class of hybrid systems[J].DiscreteDynamics in Nature and Society,2006,22(5):1-17.
[12]  田雨波,朱人杰.粒子群优化算法中惯性权重的研究进展[J].计算机工程与应用,2008,44(23):39-41.TIAN Yu-bo,ZHU Ren-jie.Research advances on inertiaweight in particle swam optimization[J].ComputerEngineering and Application,2008,44(23):39-41.(inChinese)
[13]  TRELEA I C.The particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Processing Letters,2003,85(6):317-325.
[14]  周敏,李太勇.粒子群优化算法中的惯性权值非线性调整策略[J].计算机工程,2011,37(5):204-207.ZHOU Min,LI Tai-yong.Nonlinear adjustment strategyof inertia weight in particle swarm optimization algorithm[J].Computer Engineering,2011,37(5):204-207.(in Chinese)
[15]  CLERC M,KENNEDY J.The particle swarm-explosion,stability,and convergence in a multidimensional complexspace[J].IEEE Transactions on EvolutionaryComputation,2005,6(1):58-73.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133