全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

参数微分法近似求解一类流体波动问题

Keywords: 振动问题,参数微分法,近似求解

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对非线性物理如等离子体物理、流体力学、大气科学等领域中倍受人们关注的一类摄动问题引进“参数微分法”得到其近似解,其结果可用于研讨摄动对原物理问题解的影响.类似的问题在许多动力学问题物理解的数值定性分析及其应用WKB方法处理时也会经常遇到.这里的方法仅对一个特例给出,无疑可用于其它类似问题的处理.

References

[1]  1 Johnson R S. Shallow water waves on a viscous fluid-the undular bore. Phys Fluids, 1972, 15: 1693-1699
[2]  2 Hu P N. Collisional theory of shock and nonlinear waves in a Plasma. Phys Fluids, 1972, 15: 854-864
[3]  3刘式适,刘式达.湍流的粘性和频散效应.大气科学, 1992, 16: 205~215
[4]  4 Flectcher C A J. Burgers' equation: Amodel for all reasons. Num solutions of P D E, Ed by J Noye,North-Holland Pub Co Amsterdam, 1982
[5]  5 Shu Jian Jun. The Proper analytical solutions to the KdV-Burgers equation. J Phys, 1987, A20: 149-158
[6]  6 Canosa J, Gazdag J. The Kofteweg-de Vries-Burgers equation. J Comput Phys, 1977, 23: 393-403
[7]  7 Grimshaw R, Malomed B. A note on the interaction n between solitary waves in a singular-perturbedKorteweg-de Vries equation. J Phys, 1993(26): 4087-4091
[8]  8 Nozakl K. Hirota's method and the singular manifold expansion. J Phys Soc Japan, 1987, 56: 3052-3054
[9]  9 Duffy B R, Parkes E J. Travelling solitary waves solutions to a seventh-order generalized KdV equation.Phys lett A, 1996, 214: 271-272
[10]  10 Sagdeev R Z. Nonlinear Physics: from the pendulum to turbulence and chaos, Harwood, 1988

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133