AUBIN J P.Optima and equilibria:an introduction to nonlinear analysis [M].Berlin:Springer-Verlag,1993.
[3]
徐义红,刘三阳.(h,φ)-不变广义凸函数的若干性质与(h,φ)-不变广义凸多目标规划的最优性及对偶性[J].应用数学学报,2003,26(4):726-736.XU Yi-hong,LIU San-yang.Some properties for (h,(?))-generalized invex functions and optimality and duality of (h,(?))- generalized invex multiobjective programming[J].Acta Math Appl Sinica,2003,26(4):726-736.(in Chinese)
[4]
BEN-TAL A.On a generalized means and generalized convex functions [J].J Optim Theory Appl,1977,21:1-13.
[5]
张庆祥.非光滑(h,φ)-半无限规划解的充分性和对偶性[J].应用数学学报,2001,24(1):129-138.ZHANG Qing-xiang.On sufficiency and duality of solutions for nonsmooth (h,(?))-semi-infinite programming[J].Acta Math Appl Sinica,2001,24(1):129-138.(in Chinese)
[6]
NGAI H V.Extensions of fréchetε-subdifferential calculus and applications[J].J Math Anal Appl,2002,268:266-290.
[7]
FABIAN M.Subdifferentiability and trustworthiness in the light of a new variational principle of borvcein and preiss[J]. Acta Univ Carolina,1989,30:51-56.
[8]
AVRIEL M.Nonlinear programming:analysis and methods[M].New Jersey:Prentice-Hall,Englewood Cliffs,1976.
[9]
徐义红.(h,φ)-凸函数的广义方向导数及其性质[J].南昌大学学报(工科版),2002,24(4):81-84.XU Yi-hong.Generalized directional derivative of (h,(?))-convex function and its properties [J].Journal of Nanchang University(Engineering & Te(?)hnology),2002,24(4):81-84.(in Chinese)
[10]
CLARKE F H.Optimization and nonsmooth analysis[M].New York:Wiley-Interscience,1983.
[11]
YUAN De-hui,CHINCHULUUN A,LIU Xiao-ling,et al.Generalized convexies and generalized gradients based on algebraic operations[J].Journal of Mathematical Analysis and Applications,2006,321:675-690.
[12]
ROCKAFELLAR R T.Convex analysis[M].New Jersey:Princeton Press,1970.
[13]
WEIR T,MOND B.Pre-invex functions in multiple objective optimization[J].Journal of Mathematical Analysis and Applications,1998,136:29-38.
[14]
PHU H X.Strictly and roughly convexlike functions[J].J Optim Theory Appl,2003,117:139-156.
[15]
PASTOR K.Convexity and generalized second-order derivatives for locally Lipschitz functions [J].Nonlinear Analysis, 2005,60:547-555.
[16]
ERDOGAN A T.A low complexity multicarrier PAR reduction approach based on subgradient optimization [J].Signal Processing,2006,86:3 890-3 903.
[17]
SOLEIMANT-DAMANEH M.Characterization of nonsmooth quasiconvex and pseudoconvex functions [J].J Math Anal Appl,2007,330:1 387-1 392.