全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2010 

一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析

, PP. 77-83

Keywords: 镍基单晶高温合金,高温度梯度,枝晶偏析,微观组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用双区加热和液态金属冷却法(LMC)相结合,对一种含4%Re(质量分数)的镍基单晶高温合金进行了高温度梯度定向凝固.结果表明与传统的“高速凝固法(HRS)”(温度梯度G=20-40K/cm,抽拉速率V=50-100μm/s,一次枝晶间距λ1=200-400μm)相比,该技术可以显著提高凝固界面前沿的温度梯度(G=238K/cm)和抽拉速率(V=500μm/s).随着抽拉速率的提高,凝固界面形态呈现出平面、胞状、粗大枝晶和细枝晶形态,一次枝晶间距不断减小,通过固态相变析出的γ'强化相也被显著细化,当G=238K/cm,V=500μm/s时,λ1和枝晶干γ'相平均尺寸分别减小到61.3和0.04μm.电子探针测定表明,随着抽拉速率的提高,枝晶偏析呈现先增大后减小的趋势.这是高温度梯度条件下,固相反扩散作用强烈影响元素在枝晶中分布的结果.

References

[1]  Tin S, Pollock T M. J Propul Power, 2006; 22: 361
[2]  Reed R C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006: 157
[3]  Zhang J. J Mater Sci Technol, 2007; 23: 289
[4]  Pollock T M, Murphy W H. Metall Mater Trans, 1996; 27A: 1081
[5]  Wilson B C, Cutler E R, Fuchs G E. Mater Sci Eng, 2008; A479: 356
[6]  Fritzmeier L G. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C, eds., Superalloys 1988, Warrendale: TMS, 1988: 265
[7]  Elliott A J, Karney G B, Gigliotti M F X, Pollock T M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 421
[8]  Elliott A J, Pollcok T M. Metall Mater Trans, 2007; 38A: 871
[9]  Li D Z, Su S F, Wang J Q, An G Y, Xu D M. Foundry, 1998; 06: 13
[10]  Seo S M, Lee J H, Yoo Y S, Jo C Y, Miyahara H, Ogi K. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S A, eds., Superalloys 2008, Warrendale: TMS, 2008: 277
[11]  Hobbs R A, Tin S, Rae C M F. Metall Mater Trans, 2005; 36A: 2761
[12]  Caldwell E C, Fela F J, Fuchs G E. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 811
[13]  Hu H Q. Solidification Principle of Metals. Beijing: China Machine Press, 2000: 130
[14]  (胡汉起. 金属凝固原理. 北京: 机械工业出版社, 2000: 130)
[15]  Kurz W, Fisher D J. Fundamentals of Solidification. 4th Ed., Switzerland: Trans Tech Publication Ltd, 1998: 123
[16]  Thirumalai A, Akhtar A, Reed R C. Mater Sci Technol, 2006; 22: 1
[17]  D’Souza N, Ardakani M G, McLean M, Shollock B A. Metall Mater Trans, 2000; 31A: 2877
[18]  Li L. PhD Thesis, Aubrun University, Alabama, 2002
[19]  Kearsey R M, Beddoes J C, Jones P, Au P. Intermetallics, 2004; 12: 903
[20]  Zhang W G, Liu L, Huang T W, Zhao X B, Yu Z H, Fu H Z. Acta Metall Sin, 2009; 45: 592
[21]  (张卫国, 刘林, 黄太文, 赵新宝, 余竹焕, 傅恒志. 金属学报, 2009; 45: 592)
[22]  Karunaratne M S A, Carter P, Reed R C. Mater Sci Eng, 2000; A281: 229
[23]  Hobbs R A, Tin S, Rae C M F, Broomfield R W, Humphreys C J. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S, eds., Superalloys 2004, Warrendale: TMS, 2004: 819

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133