全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2010 

相场方法研究Al-Ag合金γ相周围溶质析出过程

DOI: 10.3724/SP.J.1037.2010.00216, PP. 1473-1480

Keywords: Al-Ag合金,Spinodal分解,相场模拟,析出相

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对Al-Ag合金溶质的Spinodal亚稳互溶隙曲线的特点,考虑溶质场与析出相的相互作用,通过构造时效温度和溶质浓度相关联的局域相互作用自由能密度函数,建立了低Ag溶质的Al-Ag合金析出过程的相场模型.模拟了Ag溶质浓度分别为4.2%和22%的体系中溶质场的Spinodal分解和析出Guinier-Preston区(GPZ),以及在析出相附近形成一种无沉淀区(PFZ)的演化过程.模拟结果表明,在析出相周围形成了椭圆形的PFZ,其宽度大约是棒宽度的2倍,而在远离PFZ的区域出现了由于Spinodal分解而形成的Ag溶质分布图案.经过足够长的时效时间,溶质场析出GPZ.当Ag溶质浓度较高时,浓度场会在PFZ周围形成多条液滴状的平行流线环绕着的析出相.模拟结果与实验观察结果很好地吻合.

References

[1]  参考文献
[2]  L. F. Mondolfo. Structure and Propertys of Aluminum Alloys[M]. London: Butterworths Press, 1976, 200-400.
[3]  Aiken R M and Plichta M R, Acta Metall. Meter., 1990; 38: 77
[4]  Rajab E K and Doherty R D, Acta Metall., 1989; 37: 2709
[5]  Sagoe K K and Brown L C, Acta Metall., 1986; 34: 1563
[6]  Busch B Gartner F, Borcher C, Haasen P, and Bormenn R. Acta Metall. Meter., 1995; 43: 3467
[7]  Zhao J C and Notis M R, Acta Meter., 1998; 46: 4203
[8]  Ditchek B and Schwartz L H, Mater Sci Eng , 1980; 28: 807
[9]  Kralochril P, Mandula M, Menel J, Pesicka J, and Smola B. Physica Status Solidi, 1987; 104A: 579
[10]  A.MALIK. “Microstructure of GPZ in Al-Ag Alloy” , Acta Mater, 1996, 44: 4845-4852.
[11]  F.Erni., “High-resolution Z-contrast STEM of GPZ in Al-3at.%Ag alloy”, Mater. Chem. Phys .2003, 81:227-221
[12]  D.A.Porter, k.E.Easterling,”Phase Transformations in Metals and Alloys”. second Edition, Chapman & Hall London.UK, Published in 1996,
[13]  GAOYingjun,HAN Yongjian and ZHAO Miao. The Chinese Journal of Nonferrous Metals, 2004; 14: 730
[14]  (高英俊,韩永剑,赵妙. 中国有色金属学报,2004; 14: 730)
[15]  K.T.Moore,J.M.House. “Chcuaetenjatim of plate-Shaped precipitates in an Al-4.2at.%Ag alloy”, Acta Mater , 2000,48:4083-4098.
[16]  K.T.Moore,J.M.House. “On the interaction between Ag-depleted Zones surrounding plates and spinodal decomposition in an Al-22at.%Ag alloy”. Acta Mater , 2002,50:943-956.
[17]  Chen L Q, Yang W, Computer simulation of the domain dynamics of a quenched system with large number of nonconserved order parameters. Phys Rev B, 1994, 50:15752-15756.
[18]  V.Vaithyana, L.Q.Chen.. Multiseale modeling of precipitate microstructure evolution in Al-Cu alloy. Phys.Rev.Lett.2002, 88: 125503-1
[19]  Fan D N and Chen L Q, Acta Mater., 1997; 45(2): 611-622.
[20]  Cahn J W, Hilliard J E. Free energy of a nonuniform system .In interfacial free energy. J Chem. Phys.,1958, 28:258-260.
[21]  L.-Q.Chen, D.Fan. Computer simulation model for coupled grain growth to Al2O3-ZrO2 two-phase systems. J Am Ceram Soc. 1996, 79 (5):1163-1168
[22]  T.Takaki., T. Hirouchi, Phase Field model to simulate microstructure Evolution during Dynamic Recrystallization. Mater. Transactions, 2008, 49: 2559
[23]  Y.L.Li and L-Q Chen. Temperature-strain phase diagram for BaTiO3 thin films. Appl.Phys.Lett.2006, 88(7): 072905
[24]  T.Takaki.. Phase-field study of interface energy effect on quantum dot morphology. J. Crystal Growth.2008, 310: 2248-2253
[25]  Y.U.Wang. Computer modeling and simulation of solid-state sintering: A phase field approach. Acta Mater .2006, 54: 953-961
[26]  Wei Li and Lian Gao. Computing and sintering behavior of nano ZrO2 powders. Scripta Mater , 2001, 44: 2269-2272
[27]  J.E.Guyer, W.J.Boittinger.. Phase field modeling of electrochemistry:. Phys. Rev. E. 2004 , 69:021603
[28]  H.Ramanarayan. T.AAbinandanan,“Grain boundary effect on spinodal decomposition II .discontinuous microstructures”. Acta Mater 2004,52:921-930
[29]  GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. The Microscopic Mechanism Interpret on a Precipitate-free Zones of γ Phase in Al-Ag Alloy. Precious Metals, 2005,26(1):1-5
[30]  (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金 相周围无沉淀带形成的机理研究. 贵金属, 2005,26(1):1-5)
[31]  GAO Yingjun, ZHAO Miao, HUANG Chuanggao, LAN Zhiqiang. Valence Electron Structure of GP Zone and Interface Energy in Al-Ag Alloy. Precious Metals,2005,26(3):21-24
[32]  (高英俊, 赵妙, 黄创高, 蓝志强. Al-Ag合金GP区的价电子结构与界面能. 贵金属, 2005,26(3):21-24)
[33]  Danan Fan, Long-Qing Chen. Computer simulation of grain growth and ostwald ripening in Alumina-Zirconia two-phase composites. J Am Ceram Soc, 1997, 80(7):1773-1780
[34]  GAO Yingjun, ZHANG Hailin, JIN Xing, HUANG Chuanggao, and LUO Zhirong. Acta Metallurgica Sinica, 2009; 45: 1190
[35]  (高英俊,张海林,金星,黄创高,罗志荣. 金属学报,2009; 45: 1190)
[36]  Moelans N, Blanpain B, Wollants P. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles [J].Acta Mater , 2006, 54:1175-1184
[37]  YOU Yuan, YAN Mufu, CHEN Yiqing. Acta Metallurgica Sinica, 2008, 44(10): 1171-1174
[38]  (由园,闫牧夫,陈义强, 低体积分数,金属学报,2008, 44(10): 1171-1174)
[39]  Oono Y , Pori S. Computationally efficient modeling of ordering of quenched phases[J]. Phys Rev Lett, 1987, 58(8): 836-839

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133