全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2012 

抗变形X100管线钢模拟焊接热影响区的组织与韧性研究

DOI: 10.3724/SP.J.1037.2012.00215, PP. 797-806

Keywords: X100管线钢,热影响区,热输入,韧性,抗变形,显微组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Gleeble-3800热模拟机研究了多相抗变形X100高Nb含量管线钢的焊接性能,利用金相显微技术(OM)、扫描电镜(SEM)、电子背散射衍射(EBSD)对模拟焊接热影响区的组织进行了表征,结合示波冲击及微观硬度实验结果分析了影响模拟焊接热影响粗晶区(CGHAZ)的低温韧性及热影响区硬度与组织之间的关系.研究表明,高Nb抗变形X100管线钢单道次焊接热输入小于20kJ/cm时的CGHAZ具有较高韧性,形成大角晶界密度较高的板条贝氏体或针状铁素体;焊接热输入大于等于25kJ/cm会导致CGHAZ晶粒均匀性的恶化,使M/A组元粗化,并形成取向单一的粗大粒状贝氏体;示波冲击实验及SEM断口分析显示,粗大的M/A组元处极容易启裂,高的大角晶界密度可显著提高裂纹扩展功,使材料韧化.同时,为保证焊接热影响区不过度软化,以及高硬度产生抗氢致延迟破坏,单道次的焊接热输入以15-20kJ/cm为宜.

References

[1]  Wang X X. Weldding Pipe, 2012; 35( ): 5
[2]  (王晓香. 焊管, 2012; 35(~): 5)
[3]  Shang C J, WangX X, Liu Q Y, Fu J Y. Int Seminar on Welding of Pipline Steel, Arasa, Brazil: December, 2011
[4]  Miao C L, Shang C J, Cao J P, Wang X M, He X L. Iron Steel, 2009; 44: 62
[5]  (缪成亮, 尚成嘉, 曹建平, 王学敏, 贺信莱. 钢铁, 2009, 44: 62)
[6]  Miao C L, Shang C J, Zhang G D, Sunbrainmani S. Mater Sci Eng, 2010; A527: 4985
[7]  Miao C L, Shang C J, Wang X M, Zhang L F, Subramanian S V. Acta Metall Sin, 2010; 46: 5419
[8]  (尚成嘉. 石油天然气用高性能钢技术论坛--油气开采、储运的战略需求对钢铁材料的新挑战, 北京: 中国金属学会, 2011: 55)
[9]  Miao C L, Liu Z W, Guo H, Shang C J, Fu H Y, Wang X X. Trans Mater Heat Treatment, 2012; 33: 99
[10]  (缪成亮, 刘振伟, 郭晖, 尚成嘉, 付彦宏, 王晓香. 材料热处理学报, 2012; 33: 99)
[11]  Grong φ. Metallurgical Modelling of Welding. 2nd ed. London: The Institute of Materials, 1997: 26
[12]  Zurob H S, Zhu G, Subramanian S V, Purdy G R. Hutchinson C R, Brechet Y. ISIJ Int, 2005; 45: 713
[13]  Diazfuentes M, Izamendia A, Gutierrez I. Metall Mater Trans, 2003; 34A: 2005
[14]  Lambert A, Garat X, Sturel T, Gourgues A F, Gingell A. Scr Mater, 2000; 43: 161
[15]  Gourgues A F, Flower H M, Lindley T C. Mater Sci Technol, 2000; 16: 26
[16]  Wang Y K, Shan Y Y. Inter Pipeline Steel Summit, Beijing, 2009: 162
[17]  (王仪康, 单以银. 国际管线钢峰会, 北京, 2009: 162)
[18]  Wang Y K, Pan J H, Yang K, Shan Y Y. Weldding Pipe, 2007; 30(1): 11
[19]  (王仪康, 潘家华, 杨 柯, 单以银. 焊管, 2007; 30(1): 11)
[20]  Li H L, Li X, Ji L K, Chen H D. Weldding Pipe, 2007; 30(5): 5
[21]  (李鹤林, 李宵, 吉玲康, 陈宏达. 焊管, 2007; 30(5): 5)
[22]  Hwang B, Kim Y G, Lee S, Kim Y M, Yoo J Y. Metall Mater Trans, 2005; 36A: 2107
[23]  Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K. Acta Mater, 2006; 54: 435
[24]  Li Y, Crowther D N, Green M J W, Mitchell P S, Baker T N. ISIJ Int, 2001; 41: 46
[25]  Sungtak Lee, Byung Chun Kim, Dongil Kwon. Metall Mater Trans, 1993; 24A: 1133
[26]  Liu D Y, Xu H, Yang K, Bai B Z, Fang H S. Acta Metall Sin, 2004; 40: 882
[27]  (刘冬雨, 徐鸿, 杨昆, 白秉哲, 方鸿生. 金属学报, 2004; 40: 882)
[28]  Liu D S, Cheng B G, Luo M. Acta Metall Sin, 2011; 47: 1233
[29]  (刘东升, 程丙贵, 罗咪. 金属学报, 2011; 47: 1233)
[30]  Wiesner C S. Int J Pres Ves Piping, 1996; 69: 185
[31]  Hashemi S H. Int J Pres Ves Piping, 2008; 85: 879
[32]  (缪成亮, 尚成嘉, 王学敏, 张龙飞, Subramanian S V. 金属学报, 2010; 46: 5419)
[33]  Miao C L, Shang C J, Zhang G D, Zhu G H, Zurob H, Subramanian S V. Front Mater Sci China, 2010; 4: 197
[34]  Nie W J, Shang C J, Guan H L,Zhang X B, Chen S H. Acta Metall Sin, 2012; 48: 298
[35]  (聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧. 金属学报, 2012; 48: 298)
[36]  Shang C J. Technology Forum on High Grade Pipeline Steels for Oil & Gas Industry-New Challenges for Steels from Strategic Demand of Exploration and Transportation of Oil & Gas, Beijing, Chinese Society for Metals (CSM), 2011: 55)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133