全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
金属学报  2013 

含β相TiAl合金高温变形的不连续屈服行为

DOI: 10.3724/SP.J.1037.2013.00470, PP. 1339-1346

Keywords: TiAl合金,不连续屈服,动态软化,超位错,Orowan方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

在热模拟试验机上进行高温压缩实验,研究了含β相的Ti—42Al—9V—0.3Y合金的高温变形行为,分析了其不连续屈服行为的产生机理.研究表明,含β相的Ti—42Al—9V—0.3Y合金的主要热变形软化机制为β相的动态回复和γ相的动态再结晶,高温变形过程的不连续屈服行为与β相的动态回复和γ相中超位错(Burgers矢量b=1/2〈112〉)的增殖相关.基于Orowan方程建立的位错动力学模型可合理解释该合金不连续屈服的产生原因,证实可动位错密度的快速增加和低的位错速度应力敏感系数m*容易诱发TiAl合金的不连续屈服.合金在较低温度(1100—1150℃)和较高应变速率(1s-1)下产生波动屈服归因于位错滑移和孪晶交互作用.

References

[1]  (赖运金, 曾卫东, 张弛, 周建华, 王晓英, 俞汉清, 周义刚. 机械科学与技术, 2007; 26: 1183)
[2]  Philippart I, Rack H J. Mater Sci Eng, 1998; A254: 253
[3]  Yamaguchi M, Umakoshi Y. Prog Mater Sci, 1990; 34(1): 1
[4]  Apple F, Wagner R. Mater Sci Eng, 1998; R22: 187
[5]  Haasen P. Dislocation Dynamics. New York: McGraw—Hill Book Company, 1968: 701
[6]  Yonenaga I, Sumino K. J Appl Phys, 1989; 65: 85
[7]  Yang D Z. Dislocation and Strengthening Mechanism of Metals. Harbin: Harbin Institute of Technology Press, 1990: 131
[8]  (杨德庄. 位错与金属强化机制. 哈尔滨: 哈尔滨工业大学出版社, 1990: 131)
[9]  Zhao J S. Fundamentals of Dislocation Theory. Beijing: National Defense Industry Press, 1989: 125
[10]  (赵敬世. 位错理论基础. 北京: 国防工业出版社, 1989: 125)
[11]  Wang Z J, Qiang H F, Wang X R. Chin J Nonferrous Met, 2012; 22: 1904
[12]  (王哲君, 强洪夫, 王学仁. 中国有色金属学报, 2012; 22: 1904)
[13]  Hu D. Intermetallics, 2001; 9: 1037
[14]  Das G, Kestler H, Clemens H, Bartolotta P A. J Met, 2004; 56(11): 42
[15]  Xu X J, Lin J P, Wang Y L, Gao J F, Lin Z, Chen G L.J Alloys Compd, 2006; 414: 175
[16]  Vanderschueren D, Nobuki M, Nakamura M. Scr Metall Mater, 1993; 28: 605
[17]  Tetsui T, Kobayashi T, Harada H. Mater Sci Eng, 2012; A552: 345
[18]  Clemens H, Chladil H F, Wallgram W, Zickler G A, Gerling R, Liss K D,Kremmer S, Guther V, Smarsly W. Intermetallics, 2008; 16: 827
[19]  Niu H Z, Chen Y Y, Xiao S L, Xu L J. Intermetallics, 2012; 31: 225
[20]  Brenner S S. J Appl Phys, 1957; 28: 1023
[21]  Hahn G T. Acta Metall, 1962; 10: 727
[22]  Varin R A, Mazurek B, Himbeault D. Mater Sci Eng, 1987; 10: 109
[23]  Kurzydlowski K J. Scr Metall Mater, 1992; 1: 283
[24]  Li L X, Lou Y, Yang L B, Peng D S, Rao K P. Mater Des, 2002; 23: 451
[25]  Jia W J, Zeng W D, Zhou Y G, Liu J R, Wang Q J. Mater Sci Eng, 2011; A528: 406
[26]  Jonas J J, Heritier B, Luton M J. Metall Trans, 1979; 10A: 611
[27]  Vijayshankar M N, Ankem S. In: Froes F H, Caplan I eds.,Proc Titanium'92: Science and Technology, Warrendale: TMS, 1993: 1733
[28]  Ankem S, Shyue J G, Vijayshankar M N, Arsenault R J. Mater Sci Eng, 1989; A111: 51
[29]  Besag F M C, Smallman R E. Acta Metall, 1970; 18: 429
[30]  Lai Y J, Zeng W D, Zhang C, Zhou J H, Wang X Y, Yu H Q, Zhou Y G.Mech Sci Technol Aerosp Eng, 2007; 26: 1183

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133