全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

基于环糊精的智能刺激响应型药物载体

DOI: 10.7536/PC140829, PP. 79-90

Keywords: 环糊精,智能药物载体,刺激-响应,自组装

Full-Text   Cite this paper   Add to My Lib

Abstract:

智能药物载体凭借其独特的刺激-响应机制控制药物的释放速度和转运部位,已成为当前化学与药学领域的研究热点之一。由于具有提高药物在体内的生物利用度和降低其毒副作用等优点,智能药物载体将在未来的临床治疗中起到越来越重要的作用。近年来,环糊精作为药物载体材料的研究取得了巨大进步,其在药物控释的时间、空间和剂量上更为准确。环糊精具有大环结构,可自组装、易于功能化、天然无毒且价格低廉,已被广泛应用于构筑智能药物载体。凭借其自组装、分子识别和动态可逆性能力,环糊精可以同其他生物相容性材料构筑具有不同性能的智能药物载体。这种载体可在外界刺激下做出相关理化性质改变的反馈调节,包括通过内源性刺激(pH值、氧化还原物质和酶浓度等)和外源性刺激(温度、光、磁场、超声和电压等),进而控制药物的释放。本文综述了面向不同刺激因素的基于环糊精智能刺激响应型药物载体的作用机理、特点和应用的最新研究进展,并对其发展前景作了进一步的展望。

References

[1]  Liu Y, Chen Y. Acc. Chem. Res., 2006, 39: 681.
[2]  Chen Y, Liu Y. Chem. Soc. Rev., 2010, 39: 495.
[3]  Del Valle E M M. Process Biochem., 2004, 39: 1033.
[4]  Kurkov S V, Loftsson T. Int. J. Pharm., 2013, 453: 167.
[5]  Zheng P J, Hu X, Zhao X Y, Li L, Tam K C, Gan L H. Macromol. Rapid Commun., 2004, 25: 678.
[6]  Liu Y, Zhao D Y, Ma R J, Xiong D A, An Y L, Shi L Q. Polymer, 2009, 50: 855.
[7]  Du L, Liao S J, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 15136.
[8]  Ashley C E, Carnes E C, Phillips G K, Padilla D, Durfee P N, Brown P A, Hanna T N, Liu J W, Phillips B, Carter M B, Carroll N J, Jiang X M, Dunphy D R, Willman C L, Petsev D N, Evans D G, Parikh A N, Chackerian B, Wharton W, Peabody D S, Brinker C J. Nat. Mater., 2011, 10: 389.
[9]  Ambrogio M W, Thomas C R, Zhao Y L, Zink J I, Stoddartt J F. Acc. Chem. Res., 2011, 44: 903.
[10]  Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46: 7548.
[11]  Tarn D, Ashley C E, Xue M, Carnes E C, Zink J I, Brinker C J. Acc. Chem. Res., 2013, 46: 792.
[12]  Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y. Biomaterials, 2014, 35: 7951.
[13]  Zhang Q, Wang X L, Li P Z, Nguyen K T, Wang X J, Luo Z, Zhang H C, Tan N S, Zhao Y L. Adv. Funct. Mater., 2014, 24: 2450.
[14]  Luo Z, Ding X W, Hu Y, Wu S J, Xiang Y, Zeng Y F, Zhang B L, Yan H, Zhang H C, Zhu L L, Liu J J, Li J H, Cai K Y, Zhao Y L. ACS Nano, 2013, 7: 10271.
[15]  Liu R, Zhang Y, Feng P Y. J. Am. Chem. Soc., 2009, 131: 15128.
[16]  Hu Y, Zhao N, Yu B, Liu F, Xu F J. Nanoscale, 2014, 6: 7560.
[17]  Chen X F, Chen L, Yao X M, Zhang Z, He C L, Zhang J P, Chen X S. Chem. Commun., 2014, 50: 3789.
[18]  Diez P, Sanchez A, Gamella M, Martinez-Ruiz P, Aznar E, de la Torre C, Murguia J R, Martinez-Manez R, Villalonga R, Pingarron J M. J. Am. Chem. Soc., 2014, 136: 9116.
[19]  Aznar E, Villalonga R, Gimenez C, Sancenon F, Marcos M D, Martinez-Manez R, Diez P, Pingarron J M, Amoros P. Chem. Commun., 2013, 49: 6391.
[20]  Zhang J, Yuan Z F, Wang Y, Chen W H, Luo G F, Cheng S X, Zhuo R X, Zhang X Z. J. Am. Chem. Soc., 2013, 135: 5068.
[21]  Li Y W, Guo H L, Zhang Y F, Zheng J, Gan J Q, Guan X X, Lu M G. RSC Adv., 2014, 4: 17768.
[22]  Du X X, Song N, Yang Y W, Wu G L, Ma J B, Gao H. Polym. Chem., 2014, 5: 5300.
[23]  Kandoth N, Kirejev V, Monti S, Gref R, Ericson M B, Sortino S. Biomacromolecules, 2014, 15: 1768.
[24]  Fraix A, Gref R, Sortino S. J. Mat. Chem. B, 2014, 2: 3443.
[25]  Master A, Livingston M, Sen Gupta A. J. Control. Release, 2013, 168: 88.
[26]  Ford P C. Nitric Oxide-Biol. Ch., 2013, 34: 56.
[27]  Peng K, Tomatsu I, Kros A. Chem. Commun., 2010, 46: 4094.
[28]  Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Angew. Chem. Int. Ed., 2010, 49: 7461.
[29]  Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat. Commun., 2012, 3: 603.
[30]  Liu L, Rui L, Gao Y, Zhang W. Polym. Chem., 2014, 5: 5453.
[31]  Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686.
[32]  Tarn D, Ferris D P, Barnes J C, Ambrogio M W, Stoddart J F, Zink J I. Nanoscale, 2014, 6: 3335.
[33]  Lv S N, Zhao M Q, Cheng C J, Zhao Z G. J. Nanopart. Res., 2014, 16.
[34]  Anirudhan T S, Dilu D, Sandeep S. J. Magn. Magn. Mater., 2013, 343: 149.
[35]  Badruddoza A Z M, Rahman M T, Ghosh S, Hossain M Z, Shi J Z, Hidajat K, Uddin M S. Carbohydr. Polym., 2013, 95: 449.
[36]  Lee J, Kim H, Kim S, Lee H, Kim J, Kim N, Park H J, Choi E K, Lee J S, Kim C. J. Mater. Chem., 2012, 22: 14061.
[37]  Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y. J. Control. Release, 2009, 137: 63.
[38]  Kheirolomoom A, Mahakian L M, Lai C Y, Lindfors H A, Seo J W, Paoli E E, Watson K D, Haynam E M, Ingham E S, Xing L, Cheng R H, Borowsky A D, Cardiff R D, Ferrara K W. Mol. Pharm., 2010, 7: 1948.
[39]  Gourevich D, Dogadkin O, Volovick A, Wang L J, Gnaim J, Cochran S, Melzer A. J. Control. Release, 2013, 170: 316.
[40]  Zhao Y, Zhu Y C, Fu J K, Wang L Z. Chem. Asian J., 2014, 9: 790.
[41]  Harada A. Acc. Chem. Res., 2001, 34: 456.
[42]  Feng A C, Yan Q, Zhang H J, Peng L, Yuan J Y. Chem. Commun., 2014, 50: 4740.
[43]  Peng L, Feng A C, Zhang H J, Wang H, Jian C M, Liu B W, Gao W P, Yuan J Y. Polym. Chem., 2014, 5: 1751.
[44]  Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2010, 132: 9268.
[45]  Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A. Chem. Rev., 2005, 105: 1491.
[46]  Yagai S, Kitamura A. Chem. Soc. Rev., 2008, 37: 1520.
[47]  Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R P. Chem. Rev., 2001, 101: 4071.
[48]  Liu Y, Han B H, Sun S X, Wada T, Inoue Y. J. Org. Chem., 1999, 64: 1487.
[49]  Steinman R M, Mellman I S, Muller W A, Cohn Z A. J. Cell Biol., 1983, 96: 1.
[50]  Killisch I, Steinlein P, Romisch K, Hollinshead R, Beug H, Griffiths G. J. Cell Sci., 1992, 103: 211.
[51]  Stubbs M, McSheehy P M J, Griffiths J R, Bashford C L. Mol. Med. Today, 2000, 6: 15.
[52]  Yang B, Jia H Z, Wang X L, Chen S, Zhang X Z, Zhuo R X, Feng J. Adv. Healthc. Mater., 2014, 3: 596.
[53]  Kulkarni A, DeFrees K, Hyun S H, Thompson D H. J. Am. Chem. Soc., 2012, 134: 7596.
[54]  Kulkarni A, Badwaik V, DeFrees K, Schuldt R A, Gunasekera D S, Powers C, Vlahu A, VerHeul R, Thompson D H. Biomacromolecules, 2014, 15: 12.
[55]  Duncan B, Kim C, Rotello V M. J. Control. Release, 2010, 148: 122.
[56]  Wang H, Chen Y, Li X Y, Liu Y. Mol. Pharm., 2007, 4: 189.
[57]  Zhao D, Chen Y, Liu Y. Chem. Asian J., 2014, 9: 1895.
[58]  Chen Y, Yu L, Feng Z, Hou S, Liu Y. Chem. Commun., 2009: 4106.
[59]  Liu Y, Yu Z L, Zhang Y M, Guo D S, Liu Y P. J. Am. Chem. Soc., 2008, 130: 10431.
[60]  Meng H A, Xue M, Xia T A, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690.
[61]  Xue M, Zhong X, Shaposhnik Z, Qu Y Q, Tamanoi F, Duan X F, Zink J I. J. Am. Chem. Soc., 2011, 133: 8798.
[62]  Yan Q, Zhang H J, Zhao Y. ACS Macro Lett., 2014, 3: 472.
[63]  Zhang Z, Ding J X, Chen X F, Xiao C S, He C L, Zhuang X L, Chen L, Chen X S. Polym. Chem., 2013, 4: 3265.
[64]  Chen T, Fu J J. Nanotechnology, 2012, 23.
[65]  Zhao Y L, Li Z X, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016.
[66]  Guo D S, Zhang T X, Wang Y X, Liu Y. Chem. Commun., 2013, 49: 6779.
[67]  Park C, Kim H, Kim S, Kim C. J. Am. Chem. Soc., 2009, 131: 16614.
[68]  Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 2382.
[69]  Schild, H.G. Prog. Polym. Sci., 1992, 17: 163.
[70]  Zhang Z X, Liu K L, Li J. Angew. Chem. Int. Ed., 2013, 125: 6300.
[71]  Sakai F, Chen G S, Jiang M. Polym. Chem., 2012, 3: 954.
[72]  Zeng J G, Shi K Y, Zhang Y Y, Sun X H, Zhang B L. Chem. Commun., 2008, 3753.
[73]  Voskuhl J, Stuart M C A, Ravoo B J. Chem. Eur. J., 2010, 16: 2790.
[74]  Uhlenheuer D A, Wasserberg D, Haase C, Nguyen H D, Schenkel J H, Huskens J, Ravoo B J, Jonkheijm P, Brunsveld L. Chem. Eur. J., 2012, 18: 6788.
[75]  Liu B W, Zhou H, Zhou S T, Zhang H J, Feng A C, Jian C M, Hu J, Gao W P, Yuan J Y. Macromolecules, 2014, 47: 2938.
[76]  Han D H, Tong X, Boissiere O, Zhao Y. ACS Macro Lett., 2012, 1: 57.
[77]  Han D H, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y. Macromolecules, 2012, 45: 7440.
[78]  Wang L, Zou H X, Dong Z Y, Zhou L P, Li J X, Luo Q, Zhu J Y, Xu J Y, Liu J Q. Langmuir, 2014, 30: 4013.
[79]  Zhou C C, Cheng X H, Yan Y, Wang J D, Huang J B. Langmuir, 2014, 30: 3381.
[80]  Suzaki Y, Taira T, Takeuchi D, Osakada K. Org. Lett., 2007, 9: 887.
[81]  Zhang J J, Shen X H. J. Phys. Chem. B, 2013, 117: 1451.
[82]  Nalluri S K M, Voskuhl J, Bultema J B, Boekema E J, Ravoo B J. Angew. Chem. Int. Ed., 2011, 50: 9747.
[83]  Jin H B, Zheng Y L, Liu Y, Cheng H X, Zhou Y F, Yan D Y. Angew. Chem. Int. Ed., 2011, 50: 10352.
[84]  Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2007, 129: 6396.
[85]  Li Z Q, Zhang Y M, Chen H Z, Zhao J, Liu Y. J. Org. Chem., 2013, 78: 5110.
[86]  Agostini A, Sancenon F, Martinez-Manez R, Marcos M D, Soto J, Amoros P. Chem. Eur. J., 2012, 18: 12218.
[87]  Park C, Lee K, Kim C. Angew. Chem. Int. Ed., 2009, 48: 1275.
[88]  Liu Y, Yu C Y, Jin H B, Jiang B B, Zhu X Y, Zhou Y F, Lu Z Y, Yan D Y. J. Am. Chem. Soc., 2013, 135: 4765.
[89]  Samanta A, Stuart M C A, Ravoo B J. J. Am. Chem. Soc., 2012, 134: 19909.
[90]  Himmelein S, Lewe V, Stuart M C A, Ravoo B J. Chem. Sci., 2014, 5: 1054.
[91]  Li Q L, Wang L, Qiu X L, Sun Y L, Wang P X, Liu Y, Li F, Qi A D, Gao H, Yang Y W. Polym. Chem., 2014, 5: 3389.
[92]  Guardado-Alvarez T M, Devi L S, Russell M M, Schwartz B J, Zink J I. J. Am. Chem. Soc., 2013, 135: 14000.
[93]  Guardado-Alvarez T M, Devi L S, Vabre J M, Pecorelli T A, Schwartz B J, Durand J O, Mongin O, Blanchard-Desce M, Zink J I. Nanoscale, 2014, 6: 4652.
[94]  Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T. ACS Appl. Mater. Interfaces, 2010, 2: 1903.
[95]  Schenkel J H, Samanta A, Ravoo B J. Adv. Mater., 2014, 26: 1076.
[96]  Sahu S, Mohapatra S. Dalton Trans., 2013, 42: 2224.
[97]  Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat. Commun., 2011, 2.
[98]  Du P, Liu J H, Chen G S, Jiang M. Langmuir, 2011, 27: 9602.
[99]  Nakahata M, Takashima Y, Harada A. Angew. Chem. Int. Ed., 2014, 53: 3617.
[100]  Yang L T, Gomez-Casado A, Young J F, Nguyen H D, Cabanas-Danes J, Huskens J, Brunsveld L, Jonkheijm P. J. Am. Chem. Soc., 2012, 134: 19199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133