全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

置换反应制备双金属纳米催化剂

DOI: 10.7536/PC141035, PP. 472-481

Keywords: 置换反应,双金属纳米颗粒,结构控制合成,催化性能,合金,核壳,空心

Full-Text   Cite this paper   Add to My Lib

Abstract:

双金属纳米颗粒具有比单金属纳米颗粒更加优异的催化、光学及电学等性能,常见的双金属纳米颗粒制备方法有共还原法、连续还原法、电沉积法、微乳液法及置换反应法等.其中,置换反应是一种重要的双金属纳米颗粒制备方法,具有反应条件温和、无需其他还原剂、所制备的纳米颗粒粒径分布均匀、结构可调可控等特点.采用该方法制备的合金结构、核壳结构以及空心结构的双金属纳米颗粒均表现出优异的催化性能,本文综述了近年来置换反应制备不同结构双金属纳米颗粒的研究现状,并且提出了置换反应制备双金属纳米颗粒研究中存在的问题和今后可能的发展方向.

References

[1]  Ghosh T, Satpati B, Senapati D. J. Mater. Chem. C, 2014, 2(13): 2439.
[2]  Cobley C M, Xia Y N. Mater. Sci. Eng. R, 2010, 70(3/6): 44.
[3]  Zhang H J, Toshima N, Takasaki K, Okumura M. J. Alloys Compd., 2014, 586: 462.
[4]  Choi J P, Fields-Zinna C A, Stiles R L, Balasubramanian R, Douglas A D, Crowe M C, Murray R W. J. Phys. Chem. C, 2010, 114: 15890
[5]  Wu Z. Angew. Chem. Int. Ed., 2012, 51: 2934.
[6]  Liu X W, Wang D S, Li Y D. Nano Today, 2012, 7: 448.
[7]  Jo M, Choi Y W, Koo Y M, Kwon S K. Comput. Mater. Sci., 2014, 92: 166.
[8]  Sun Y, Mayers B, Xia Y N. Nano Lett., 2002, 2: 481.
[9]  Erlebacher J, Aziz M J, Karma A, Dimitrov N, Sieradzki K. Nature, 2001, 410: 450.
[10]  Kan C X, Wang C S, Zhu J J, Li H C. J. Solid State Chem., 2010, 183(4): 858.
[11]  Kim S M, Kim G S, Lee S Y. Mater. Lett., 2008, 62(28): 4354.
[12]  Pastoriza-Santos I, Liz-Marzán L M. Langmuir, 2002, 18(7): 2888.
[13]  Mazumder V, Sun S H. J. Am. Chem. Soc., 2009, 131(13): 4588.
[14]  Chauhan H, Kumar Y, Deka S. Nanoscale, 2014, 6(17): 10347.
[15]  Lucatero S, Podlaha E J. J. Electrochem. Soc., 2010, 157(6): 370.
[16]  Ren B, Fan M Q, Liu Q, Wang J, Song D L, Bai X F. Electrochim. Acta, 2013, 92: 197.
[17]  (a)Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N. J. Catal., 2013, 305: 7.; (b) Zhang H J, Lu L L, Kawashima K, Okumura M, Haruta M, Toshima N. Adv. Mater., 2014, DOI: 10.1002/adma.201404870
[18]  Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N. Nat. Mater., 2012, 11: 49.
[19]  Pearson A, O'Mullane A P, Bhargava S K, Bansal V. Electrochem. Commun., 2012, 25: 87.
[20]  Tang S C, Vongehr S, Zheng Z, Meng X K. J. Colloid Interface Sci., 2010, 351(1): 217.
[21]  Liu X Y, Wang A Q, Li L, Zhang T, Mou C Y, Lee J F. Prog. Nat. Sci., 2013, 23(3): 317.
[22]  Yi Z, Chen S J, Chen Y, Luo J S, Wu W D, Yi Y G, Tang Y J. Thin Solid Films, 2012, 520(7): 2701.
[23]  Mintsouli I, Georgieva J, Armyanov S, Valova E, Avdeev G, Hubin A, Steenhaut O, Dille J, Tsiplakides D, Balomenou S, Sotiropoulos S. Appl. Catal. B, 2013, 136/137: 160.
[24]  Coleman E J, Co A C. J. Catal., 2014, 316: 191.
[25]  Li Y H, Zhang Q, Zhang N W, Zhu L H, Zheng J B, Chen B H. International J. Hydrogen Energy, 2013, 38(30): 13360.
[26]  You D J, Jin S, Lee K H, Pak C, Choi K H, Chang H. Catal. Today, 2012, 185(1): 138.
[27]  Kim M R, Lee D K, Jang D J. Appl. Catal. B, 2011, 103: 253.
[28]  Hu Y J, Wu P, Zhang H, Cai C X. Electrochim. Acta, 2012, 85: 314.
[29]  王定胜(Wang D S), 李亚栋(Li Y D). 化学进展(Progress in Chemistry), 2013, 25(1): 1.
[30]  孙学科(Sun X K), 陈上(Chen S), 张兴宏(Zhang X H), 戚国荣(Qi G R). 化学进展(Progress in Chemistry), 2012, 24(9): 1776.
[31]  王小凤(Wang X F), 黄自力 (Huang Z L), 张海军 (Zhang H J). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2013, 42(8) : 1751.
[32]  Wilson O M, Scott R W, Garcia-Martinez J C, Crooks R M. J. Am. Chem. Soc., 2005, 127(3): 1015.
[33]  Mazumder V, Chi M F, Mankin M N, Liu Y, Metin O, Sun D H, More K L, Sun S H. Nano Lett., 2012, 12: 1102.
[34]  Yang Y, Zhang F, Wang H L, Yao Q L, Chen X S, Lu Z H. J. Nanomaterials, 2014, DOI: 10.1155/2014/294350
[35]  Liu X W, Liu J Y, He W, Huang Q H, Yang H. J. Colloid Interface Sci., 2010, 344(1): 132.
[36]  Byeon J H, Kim Y W. Nanoscale, 2012, 4(21): 6726.
[37]  Chen J L, Liu X, Zhang F Z. Chem. Eng. J., 2015, 259: 43.
[38]  Singh H P, Gupta N, Sharma S K, Sharma R K. Colloids Surf. A, 2013, 416: 43.
[39]  Tsai M C, Yeh T K, Tsai C H. Int. J. Hydrogen Energy, 2011, 36(14): 8261.
[40]  Vijayakumar J, Mohan S, Kumar S A, Suseendiran S R, Pavithra S. Int. J. Hydrogen Energy, 2013, 38(25): 10208.
[41]  Tsai C H, Yang F L, Chang C H, Yui W C Y. International J. Hydrogen Energy, 2012, 37(9): 7669.
[42]  Tendamudzimu R, Kenneth I O, Remegia M M, Charl J J, Mkhulu K M. Electrochim. Acta, 2012, 59: 310.
[43]  Zhang X, Zhang G Y, Zhang B D, Su Z H. Langmuir, 2013, 29(22): 6722.
[44]  Lu Y Z, Jiang Y Y, Chen W. Nano Energy, 2013, 2(5): 836.
[45]  Wang C N, Fang J H, Jin Y L. Spectrochimica Acta Part A, 2012, 96: 820.
[46]  王锐(Wang R), 訾学红(Zi X H), 刘立成(Liu L C), 戴洪兴(Dai H X), 何 洪(He H). 化学进展(Progress in Chemistry), 2010, 22(2/3): 358.
[47]  Chatterjee K, Sarkar S, Rao K J, Paria S. Adv. Colloid Interface Sci., 2014, 209: 8.
[48]  Li S Y, Wang M. Mater. Lett., 2013, 92: 350.
[49]  Li C L, Su Y, Lv X Y, Zuo Y Y, Yang X G, Wang Y J. Sensors and Actuators B: Chemical, 2012, 171/172: 1192.
[50]  Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Microchem. J., 2014, 116: 62.
[51]  Byeon J H, Kim Y W. Nanoscale, 2012, 4(21): 6726.
[52]  Zihlmann S, Lü?nd F, Spiegel J K. J. Aerosol Sci., 2014, 75: 81.
[53]  Du C, Su J, Luo W, Cheng G Z. J. Mol. Catal. A, 2014, 383/384: 38.
[54]  Cao N, Su J, Luo W, Cheng G Z. Catal. Commun., 2014, 43: 47.
[55]  Wojtysiak S, Solla-Gulón J, Dtu ? ewski P, Kudelski A. Colloids Surf. A, 2014, 441: 178.
[56]  Reyes-Rodríguez J L, Leyva M A, Solorza-Feria O. International J. Hydrogen Energy, 2013, 38(28): 12634.
[57]  Yang J, Lee J, Too H. J. Phys. Chem. B, 2005, 109: 19208
[58]  Zhang Q B, Xie J P, Lee J Y, Zhang J X, Hroyd C B. Small, 2008, 4(8): 1067.
[59]  Mott D M, Anh D T N, Singh P, Shankar C, Maenosono S. Adv. Colloid Interface Sci., 2012, 185/186: 14.
[60]  Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y N. Acc. Chem. Res., 2008, 41: 1587
[61]  Gong X, Yang Y, Huang S. J. Phys. Chem. C, 2010, 114: 18073
[62]  Ban Z H, Barnakov Y A, Li F, Golub V O, O'Connor C J. J. Mater. Chem., 2005, 15: 4660.
[63]  Sieben J M, Comignani V, Alvarez A E, Duarte M M E. International J. Hydrogen Energy, 2014, 39(16): 8667.
[64]  Reyes-Rodríguez J L, Godínez-Salomón F, Leyva M A, Solorza-Feria O. International J. Hydrogen Energy, 2013, 38(28): 12634.
[65]  Du C Y, Chen M, Wang W G, Tan Q, Xiong K, Yin G P. J. Power Sources, 2013, 240: 630.
[66]  Sun Y, Xia Y N. J. Am. Chem. Soc., 2004, 126: 3892.
[67]  Gilroy K D, Farzinpour P, Sundar A, Tan T, Hughes R A, Neretina S. Nano Res., 2013, 6(6): 418.
[68]  Tsuji M, Hamasaki M, Yajima A, Hattori M, Tsuji T, Kawazumi H. Materials Lett., 2014, 121: 113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133