全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2013 

金属酶中双氧活化的模型研究及应用

DOI: 10.7536/PC121049, PP. 915-926

Keywords: 双氧活化,高价金属配合物,C-H活化,二组氨酸一羧酸面式结构,卟啉类似物

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属酶活化双氧的过程对生物体内新陈代谢、信号转导等一系列功能至关重要。生物体内实现双氧活化功能的金属酶主要有血红素酶和非血红素酶两类。对模型化合物催化双氧活化过程中间体的表征及催化反应产物的分析可以揭示金属酶的双氧活化机理;对模型化合物的反应活性与配体电子效应的研究将为配合物催化剂的配体设计提供指导。特别是血红素酶和非血红素酶可以实现对C-H键的选择性活化,这是化学反应的难题之一。因此这些模型化合物可以被用做催化剂来解决药物发现、工业生产以及能源转化中的难题。本文介绍了血红素酶和单核非血红素酶模型化合物在机理研究上的近期进展,分析了卟啉类似物、二组氨酸一羧酸面式结构酶模型化合物等模型的设计思想和高价金属氧合中间体的电子结构,总结了配体电子效应和模型化合物催化活性之间的关系。最后,提出了目前模型化合物在双氧活化研究中存在的一些不足,并对其在基础研究及应用方面的发展进行了展望。

References

[1]  Mason H S, Fowlks W K, Peterson E. J. Am. Chem. Soc., 1955, 77: 2914 -2915
[2]  Guengerich F P. Chem. Res. Toxicol., 2008, 21: 70-83
[3]  He C, Mishina Y. Current Opinion in Chemical Biology, 2004, 8: 201-208
[4]  Koehntop K D, Emerson J P, Que L Jr. J. Biol. Inorg. Chem., 2005, 10: 87-93
[5]  Krebs C, Fujimori D G, Walsh C T, Bollinger J M Jr. Acc. Chem. Res., 2007, 40: 484-492
[6]  McLain J L, Lee J, Groves J T. Biomimetic Oxidations Catalyzed by Transition Metal Complexes. London: Imperial College Press, 2000. 91-169
[7]  Sligar G S. Science, 2010, 330: 924-925
[8]  Matsuo T, Murata D, Hisaeda Y, Hori H, Hayashi T. J. Am. Chem. Soc., 2007, 129: 12906-12907
[9]  Chen H, Lai W Z, Shaik S. J. Phys. Chem. B, 2011, 115: 1727-1742
[10]  Spiro T G, Jarzecki A A. Curr. Opin. Chem. Biol., 2001, 5: 715-723
[11]  Shaik S, Kumar D, de Visser S P, Altun A, Thiel W. Chem. Rev., 2005, 105: 2279-2328
[12]  Chufán E E, Puiu C S, Karlin D K. Acc. Chem. Res., 2007, 40: 563-572
[13]  Gross Z, Galili N, Saltsman I. Angew. Chem., Int. Ed., 1999, 38: 1427-1429
[14]  Gryko D T, Fox J P, Goldberg D P. J. Porphyrins Phthalo-cyanines, 2004, 8: 1091-1105
[15]  Ramdhanie B, Stern C L, Goldberg D P. J. Am. Chem. Soc., 2001, 123: 9447-9448
[16]  Oldenburg D P, Ke C Y, Tipton A A, Shteinman A A, Que L Jr. Angew. Chem. Int. Ed., 2006, 45: 7975-7978
[17]  Chen K, Costas M, Kim J, Tipton A K, Que L Jr. J. Am. Chem Soc., 2002, 124: 3026-3035
[18]  Costas M, Mehn P M, Jensen P M, Que L Jr. Chem. Rev., 2004, 104: 939-986
[19]  Bruijnincx P C A, Lutz M, den Breejen J P, Spek A L, van Koten G, Gebbink R J M K. J. Biol. Inorg. Chem., 2007, 12: 1181-1196
[20]  Bukowski R M, Koehntop D K, Stubna A, Bominaar L E, Halfen A J, Münck E, Nam W, Que L Jr. Science, 2005, 310: 1000-1002
[21]  Groves J T, Haushalter C R, Nakamura M, Nemo E T, Evans B J. J. Am. Chem. Soc., 1981, 103: 2884-2886
[22]  Groves J T. J. Inorg. Biochem., 2006, 100: 434-447
[23]  Rittle J, Green M T. Science, 2010, 330: 933-937
[24]  Prokop A K, Neu M H, de Visser P S, Goldberg P D. J. Am. Chem. Soc., 2011, 133: 15874-15877
[25]  Altun A, Shaik S, Thiel W. J. Am. Chem. Soc., 2007, 129: 8978-8987
[26]  Cho J, Woo J, Nam W. J. Am. Chem. Soc., 2012, 134: 11112-11115
[27]  Grapperhaus C A, Mienert B, Bill E, Weyhermueller T, Wieghardt K. Inorg. Chem., 2000, 39: 5306-5317
[28]  Abu-Omar M M, Loaiza A, Hontzeas N. Chem. Rev., 2005, 105: 2227-2252
[29]  Lyakin O Y, Bryliakov K P, Britovsek G J P, Talsi E P. J. Am. Chem. Soc., 2009, 131: 10798-10799
[30]  Yoon J, Wilson A S, Jang K Y, Seo S M, Nehru K, Hedman B, Hodgson O K, Bill E, Solomon I E, Nam W. Angew. Chem. Int. Ed., 2009, 48: 1257-1260
[31]  de Oliveira T F, Chanda A, Banerjee D, Shan X P, Mondal S, Que L Jr, Bominaar L E, Münck E, Collins J T. Science, 2007, 315: 835-838
[32]  Cho J, Jeon S, Wilson A S, Liu V L, Kang A E, Braymer J J, Lim H M, Hedman B, Hodgson O K, Valentine S J, Solomon I E, Nam W. Nature, 2011, 478: 502-505
[33]  Prat I, Mathieson S J, Güell M, Ribas X, Luis M J, Cronin L, Costa M. Nature Chem., 2011, 3: 788-793
[34]  Goh Y M, Nam W. Inorg. Chem., 1999, 38: 914-920
[35]  Davydov R, Makris T M, Kofman V, Werst D E, Sligar S G, Hoffman B M. J. Am. Chem. Soc., 2001, 123: 1403-1415
[36]  Hickman A J, Sanford M S. Nature, 2012, 484: 177-185
[37]  Rohde J U, In J H, Lim H M, Brennessel W W, Bukowski R M, Stubna A, Münck E, Nam W, Que L Jr. Science, 2003, 299: 1037-1039
[38]  Cho K, Leeladee P, McGown J A, DeBeer S, Goldberg P D. J. Am. Chem. Soc., 2012, 134: 7392-7399
[39]  Nam W. Acc. Chem. Res., 2007, 40: 522-531
[40]  Sastri V C, Lee J, Oh K, Lee J Y, Lee J, Jackson A T, Ray K, Hirao H, Shin W, Halfen A J, Kim J, Que L Jr, Shaik S, Nam W. Proc. Natl. Acad. Sci. U. S. A., 2007, 104: 19181-19186
[41]  Shan X, Que L Jr. J. Inorg. Biochem., 2006, 100: 421-433
[42]  Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S, Ito S, Yang C, Wang P, Xiao M T, Liu L X, Jiang W Q, Liu J, Zhang J Y, Wang B, Frye S, Zhang Y, Xu Y H, Lei Q Y, Guan K L, Zhao S M, Xiong Y. Cancer Cell, 2011, 19: 17-30
[43]  Farinas E, Tan J D, Baidya N, Mascharak P K. J. Am. Chem. Soc., 1993, 115: 2996-2997
[44]  Kurosaki H, Hayashi K, Ishikawa Y, Goto M, Inada K, Taniguchi I, Shionoya M, Kimura E. Inorg. Chem., 1999, 38: 2824-2832
[45]  Pitié M, Pratviel G. Chem. Rev., 2010, 110: 1018-1050
[46]  Fillol L J, Codolà Z, Garcia-Bosch I, Gómez L, Pla J J, Costas M. Nature Chemistry, 2011, 3: 807-813
[47]  Cao R, Lai W Z, Du P W. Energy Environ. Sci., 2012, 5: 8134-8157
[48]  Geng C Y, Ye S F, Neese F. Angew. Chem. Int. Ed., 2010, 49: 5717 -5720
[49]  Cho K B, Wu X J, Lee Y M, Kwon Y H, Shaik S, Nam W. J. Am. Chem. Soc., 2012, 134: 20222-20225
[50]  Jayaraj K, Gold A, Austin N R. J. Am. Chem. Soc., 1995, 117: 9079-9080
[51]  Decker A, Rohde J U, Que L Jr, Solomon I E. J. Am. Chem. Soc., 2004, 126: 5378-5379
[52]  Pestovsky O, Stoian S, Bominaar E L, Shan X, Muünck E, Que L Jr, Bakac A. Angew. Chem. Int. Ed., 2005, 44: 6871-6874
[53]  Lacy D C, Gupta R, Stone K L, Greaves J, Ziller J W, Hendrich M P, Borovik A S. J. Am. Chem. Soc., 2010, 132: 12188-12190
[54]  England J, Martinho M, Farquhar E R, Frisch J R, Bomi-naar E L, Münck E, Que L Jr. Angew. Chem., Int. Ed., 2009, 48: 3622-3626
[55]  Fukuto M J, Carrington J S, Tantillo J D, Harrison G J, Ignarro J L, Freeman A B, Chen A, Wink A D. Chem. Res. Toxicol., 2012, 25: 769-793
[56]  Hayaishi O, Katagiri M, Rothberg S. J. Am. Chem. Soc., 1955, 77: 5450-5451
[57]  Hegg L E, Que L Jr. Eur. J. Biochem., 1997, 250: 625-629
[58]  Karlsson A, Parales J V, Parales R E, Gibson D T, Eklund H, Ramaswamy S. Science, 2003, 299: 1039-1042
[59]  Friedle S, Reisner E, Lippard S J. Chem. Soc. Rev., 2010, 39: 2768-2779
[60]  Tinberg C E, Lippard S J. Acc. Chem. Res., 2011, 44: 280-288
[61]  Tshuva Y E, Lippard J S. Chem. Rev., 2004, 104: 987-1012
[62]  Tahsini L, Bagherzadeh M, Nam W, de Visser P S. Inorg. Chem., 2009, 48: 6661-6669
[63]  Furuta H, Srinivasan A. Acc. Chem. Res., 2005, 38: 10-20
[64]  Chiou Y M, Que L Jr. J. Am. Chem. Soc., 1995, 117: 3999-4013
[65]  Pascaly M, Duda M, Rompel A, Sift H B, Meyer-Klaucke W, Krebs B. Inorganic Chimica Acta, 1999, 291: 289-299
[66]  Beck A, Weibert B, Burzlaff N. Eur. J. Inorg. Chem., 2001, 521-527
[67]  Hübner E, Haas T, Burzlaff N. Eur. J. Inorg. Chem., 2006, 4989-4997
[68]  Oldenburg P D, Shteinman A A, Que L Jr. J. Am. Chem. Soc., 2005, 127: 15673-15674
[69]  Goldberg P D. Acc. Chem. Res., 2007, 40: 626-634
[70]  Hohenberger J, Ray K, Meyer K. Nature Communication, 2012, 3: 720-742
[71]  Niwa T, Nakada M. J. Am. Chem. Soc., 2012, 124: 13538-13541
[72]  Groves J T, Watanabe Y. J. Am. Chem. Soc., 1988, 110: 8443-8452
[73]  Bruijnincx P, Koten G, Gebbink R J M K. Chem. Soc. Rev., 2008, 37: 2716-2744
[74]  Solomon E I, Decker A, Lehnert N. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 3589-3594
[75]  Cho J, Sarangi R, Annaraj J, Kim Y S, Kubo M, Ogura T, Solomon I E, Nam W. Nature Chemistry, 2009, 1: 568-572
[76]  Wang H S, Mandimutsira S B, Todd R, Ramdhanie B, Fox P J, Goldberg P D. J. Am. Chem. Soc., 2004, 126: 18-19
[77]  Bassan A, Blomberg M, Borowski T, Siegbahn P. J. Phys. Chem. B, 2004, 108: 13031-13041
[78]  Company A, Prat I, Frisch R J, Mas-Ballesté R, Güell M, Juhász G, Ribas X, Münck E, Luis M J, Que L Jr, Costas M. Chem. Eur. J., 2010, 17: 1622-1634
[79]  Comba P, Rajaraman G, Rohwer H A. Inorg. Chem., 2007, 46: 3826-3838
[80]  Oldenburg P D, Feng Y, Pryjomska-Ray I, Ness D, Que L Jr. J. Am. Chem. Soc., 2010, 132: 17713-17723
[81]  Liu W, Huang X, Cheng M J, Nielsen J R, Goddard A W, Groves J T. Science, 2012, 337: 1322-1325
[82]  Furuya T, Kamlet S A, Ritter T. Nature, 2011, 473: 470-477
[83]  Ozer A, Bruick K R. Nature Chemical Biology, 2007, 3: 144-153
[84]  Solomon I E, Brunold C T, Davis I M, Kemsley N J, Lee S K, Lehnert N, Neese F, Skulan J A, Yang Y S, Zhou J. Chem. Rev., 2000, 100: 235-349
[85]  Neidig L M, Solomon I E. Chem. Commun., 2005, 5843-5863
[86]  Megens P R, van den Berg A T, de Bruijn D A, Feringa L B, Roelfes G. Chem. Eur. J., 2009, 15: 1723 -1733
[87]  Brown S J, Mascharak P K. J. Am. Chem. Soc., 1988, 110: 1996-1997
[88]  Tan J D, Hudson S E, Brown S J, Olmstead M M, Mascharak P K. J. Am. Chem. Soc., 1992, 114: 3841-3853
[89]  Fontecave M, Duboc-Toia C M. Cooridination Chemistry Reviews, 1998, 178/180: 1555-1572
[90]  Balasubramanian R, Smith S M, Rawat S, Yatsunyk L A, Stemmler T L, Rosenzwig A C. Nature, 2010, 465: 115-119
[91]  Krebs C, Price C J, Baldwin J, Saleh L, Green T M, Bollinger J M. Inorg. Chem., 2005, 44: 742-757
[92]  Sinnecker S, Svensen N, Barr W E, Ye S F, Bollinger J M, Neese F, Krebs C. J. Am. Chem. Soc., 2007, 129: 6168-6179
[93]  Shaik S, Hirao H, Kumar D. Acc. Chem. Res., 2007, 40: 532-542
[94]  Gupta R, Lacy D C, Bominaar E L, Borovik A S, Hendrich M P. J. Am. Chem. Soc., 2012, 134: 9775-9784
[95]  Fukuzumi S, Morimoto Y, Kotani H, Naumov P, Lee Y M, Nam W. Nature Chem., 2010, 2: 756-759
[96]  Bigi J P, Harman W H, Lassalle-Kaiser B, Robles D M, Stich T A, Yano J, Britt R D, Chang C J. J. Am. Chem. Soc., 2012, 134: 1536-1542
[97]  Hong S, Lee Y M, Shin W, Fukuzumi S, Nam W. J. Am. Chem. Soc., 2009, 131: 13910-13911
[98]  Roelfes G, Lubben M, Chen K, Ho R Y N, Meetsma A, Genseberger S, Hermant R M, Hage R, Mandal S K, Young V G Jr, Zang Y, Kooijman H, Spek A L, Que L Jr, Feringa B L. Inorg. Chem., 1999, 38: 1929-1936
[99]  Usharani D, Janardanan D, Shaik S. J. Am. Chem. Soc., 2011, 133: 176-179

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133