全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

质子交换膜的传输通道微观结构对燃料电池性能的影响

DOI: 10.7536/PC141040, PP. 395-403

Keywords: 质子传交换膜,有序质子传输通道,微观结构,相形态,燃料电池性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

质子交换膜燃料电池因其高效、高能量密度、快速启动等独特优势在便携电子设备及汽车动力装置等应用中极具发展潜力。质子交换膜内的传输通道由于对膜质子传导性能有重要影响而受到研究者们的广泛关注。构筑有序结构的质子传输通道,能够获得质子电导率与燃料渗透率、热稳定性、化学稳定性等性能均衡提升的新型质子交换膜材料。本文结合近年来质子传输通道的研究进展,对控制聚合物的相形态从而构筑有序质子传输通道的研究进行了综述,并针对不同相形态所形成的有序通道对膜及燃料电池性能的影响进行了分类与评述,最后对其发展趋势进行了展望。

References

[1]  Bussian D A, O’Dea J R, Metiu H, Buratto S K. Nano Lett., 2007, 7: 227.
[2]  O’Dea J R, Economou N J, Buratto S K. Macromolecules, 2013, 46: 2267.
[3]  Yarusso D J, Cooper S L. Macromolecules, 1983, 16: 1871.
[4]  Kreuer K D. J. Membrane Sci., 2001, 185: 29.
[5]  Yakovlev S, Wang X, Ercius P, Balsara N P, Downing K H. J. Am. Chem. Soc., 2011, 133: 20700.
[6]  Chen X C, Wong D T, Yakovlev S, Beers K M, Downing K H, Balsara N P. Nano Lett., 2014, 14: 4058.
[7]  Campagne B, David G, Améduri B, Jones D J, Rozière J, Roche I. Macromolecules, 2013, 46: 3046.
[8]  Wang L, Yi B L, Zhang H M, Xing D M. J. Phys. Chem. B, 2008, 112: 4270.
[9]  Hazarika M, Jana T. ACS Appl. Mater. Interfaces, 2012, 4: 5256.
[10]  Gasa J V, Weiss R A, Shaw M T. J. Membrane Sci., 2008, 320: 215.
[11]  Nakabayashi K, Matsumoto K, Higashihara T, Ueda M. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 7332.
[12]  Lee H, Badami A S, Roy A, Mcgrath J E. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 4879.
[13]  Nieh M, Guiver M D, Kim D S, Ding J, Norsten T. Macromolecules, 2008, 41: 6176.
[14]  Nakabayashi K, Higashihara T, Ueda M. J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 2757.
[15]  Park M J, Downing K H, Jackson A, Gomez E D, Minor A M, Cookson D, Weber A Z, Balsara N P. Nano Lett., 2007, 7: 3547.
[16]  Li H, Liu Y. J. Mater. Chem. A, 2014, 2: 3783.
[17]  Yao Y, Ji L, Lin Z, Li Y, Alcoutlabi M, Hamouda H, Zhang X. ACS Appl. Mater. Interfaces, 2011, 3: 3732.
[18]  Sung K A, Kim W, Oh K, Choo M, Nam K, Park J. J. Power Sources, 2011, 196: 2483.
[19]  Kumar M, Edwards B J, Paddison S J. J. Chem. Phys., 2013, 138: 064903.
[20]  Ke C, Li X, Shen Q, Qu S, Shao Z, Yi B. Int. J. Hydrogen Energ., 2011, 36: 3606.
[21]  Gasa J V, Weiss R A, Shaw M T. J. Membrane Sci., 2008, 320: 215.
[22]  Zhao S, Ren J, Wang Y, Zhang J. J. Membrane Sci., 2013, 437: 65.
[23]  Guo W, Tang H, Sun M, Yang H, Pan M, Duan J. Int. J. Hydrogen Energ., 2012, 37: 9782.
[24]  Kimura Y, Chen J, Asano M, Maekawa Y, Katakai R, Yoshida M. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 263: 463.
[25]  Tamura T, Kawakami H. Nano Lett., 2010, 10: 1324.
[26]  Onuma A, Kawaji J, Morishima M, Mizukami T, Takamori Y, Yamaga K. Polymer, 2014, 55: 2673.
[27]  Li N, Wang C, Lee S Y, Park C H, Lee Y M, Guiver M D. Angew. Chem. Int. Ed., 2011, 50: 9158.
[28]  Zapata P, Mountz D, Meredith J C. Macromolecules, 2010, 43: 7625.
[29]  Fu R Q, Hong L, Lee J Y. Fuel Cells, 2008, 8: 52.
[30]  Lee C, Wang Y. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 2262.
[31]  Kwon Y H, Kim S C, Lee S. Macromolecules, 2009, 42: 5244.
[32]  Hammond P T. Adv. Mater., 2004, 16: 1271.
[33]  Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. J. Am. Chem. Soc., 2007, 129: 8000.
[34]  Decker B, Hartmann-Thompson C, Carver P I, Keinath S E, Santurri P R. Chem. Mater., 2009, 22: 942.
[35]  Yang B, Manthiram A. Electrochem. Commun., 2004, 6: 231.
[36]  衣宝廉(Yi B L). 燃料电池——原理 · 技术 · 应用 (Fuel Cells: Principle, Technology, Application).北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003. 160.
[37]  Page K A, Soles C L, Runt J. Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells. Washington D C: American Chemical Society, 2012. 147.
[38]  Doyle M, Rajendran G. Perfluorinated Membranes. NY: John Wiley & Sons, Ltd, 2010. 2.
[39]  Kreuer K, Paddison S J, Spohr E, Schuster M. Chem. Rev., 2004, 104: 4637.
[40]  Schuster M, Rager T, Noda A, Kreuer K D, Maier J. Fuel Cells, 2005, 5: 355.
[41]  Hac?velio D?lu F, Okutan E, ?elik S V, Ye?ilot S, Bozkurt A, K?l?? A. Polymer, 2012, 53: 3659.
[42]  Matsumoto K, Higashihara T, Ueda M. Macromolecules, 2009, 42: 1161.
[43]  Ingratta M, Jutemar E P, Jannasch P. Macromolecules, 2011, 44: 2074.
[44]  Tsang E M W, Zhang Z, Shi Z, Soboleva T, Holdcroft S. J. Am. Chem. Soc., 2007, 129: 15106.
[45]  Peckham T J, Schmeisser J, Rodgers M, Holdcroft S. J. Mater. Chem., 2007, 17: 3255.
[46]  Choi P, Jalani N H, Datta R. J. Electrochem. Soc., 2005, 152: E123.
[47]  Kim S Y, Yoon E, Joo T, Park M J. Macromolecules, 2011, 44: 5289.
[48]  Kim B, Kim J, Jung B. J. Membrane Sci., 2005, 250: 175.
[49]  Kim D H, Choi J, Hong Y T, Kim S C. J. Membrane Sci., 2007, 299: 19.
[50]  Hou J, Li J, Mountz D, Hull M, Madsen L A. J. Membrane Sci., 2013, 448: 292.
[51]  Li J, Wilmsmeyer K G, Madsen L A. Macromolecules, 2008, 42: 255.
[52]  Kreuer K, Portale G. Adv. Funct. Mater., 2013, 23: 5390.
[53]  Einsla M L, Kim Y S, Hawley M, Lee H, Mcgrath J E, Liu B, Guiver M D, Pivovar B S. Chem. Mater., 2008, 20: 5636.
[54]  Mauritz K A, Moore R B. Chem. Rev., 2004, 104: 4535.
[55]  Gierke T D, Munn G E, Wilson F C. J. Polym. Sci.: Pol. Phys. Ed., 1981, 19: 1687.
[56]  Loppinet B, Gebel G, Williams C E. J. Phys. Chem. B: Pol. Phys., 1997, 101: 1884.
[57]  Loppinet B, Gebel G. Langmuir, 1998, 14: 1977.
[58]  Schmidt-Rohr K, Chen Q. Nat.Mater., 2008, 7: 75.
[59]  Damasceno B D, Franco A A, Malek K, Gebel G, Mossa S. ACS Nano, 2013, 7: 6767.
[60]  Hsu W Y, Gierke T D. J. Membrane Sci., 1983, 13: 307.
[61]  Hsu W Y, Gierke T D. Macromolecules, 1982, 15: 101.
[62]  Barbi V, Funari S S, Gehrke R, Scharnagl N, Stribeck N. Polymer, 2003, 44: 4853.
[63]  Gebel G. Polymer, 2000, 41: 5829.
[64]  J K V. Thermodynamics of Systems Containing Flexible-Chain Polymers. Amsterdam: Elsevier, 1999.
[65]  Olabisi O, Robeson L, Shaw M. Polymer-Polymer Miscibility. Academic Press: New York. 1979. 50.
[66]  Wang J, Jiang S, Zhang H, Lv W, Yang X, Jiang Z. J. Membrane Sci., 2010, 364: 253.
[67]  Chai Z, Wang C, Zhang H, Doherty C M, Ladewig B P, Hill A J, Wang H. Adv. Funct. Mater., 2010, 20: 4394.
[68]  Tang H, Wan Z, Pan M, Jiang S P. Electrochem. Commun., 2007, 9: 2003.
[69]  Ke C, Li X, Qu S, Shao Z, Yi B. Polym. Adv. Technol., 2012, 23: 92.
[70]  Wang J, Xiao L, Zhao Y, Wu H, Jiang Z, Hou W. J. Power Sources, 2009, 192: 336.
[71]  Shin D W, Lee S Y, Lee C H, Lee K, Park C H, Mcgrath J E, Zhang M, Moore R B, Lingwood M D, Madsen L A, Kim Y T, Hwang I, Lee Y M. Macromolecules, 2013, 46: 7797.
[72]  Beers K M, Balsara N P. ACS Macro Letters, 2012, 1: 1155.
[73]  Park M J, Balsara N P. Macromolecules, 2009, 43: 292.
[74]  Auerbach S M, Carrado K A, Dutta P K. Handbook of Layered Materials. New York: Marcel Dekker, Inc., 2004. 91.
[75]  Alberti G, Casciola M, D’Alessandro E, Pica M. J. Mater. Chem., 2004, 14: 1910.
[76]  Bauer F, Willert-Porada M. J. Membrane Sci., 2004, 233: 141.
[77]  He Y, Tong C, Geng L, Liu L, Lü C. J. Membrane Sci., 2014, 458: 36.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133