全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新疆绿洲区秸秆燃烧污染物释放量及固碳减排潜力

DOI: 10.11654/jaes.2015.05.023

Keywords: 作物秸秆 燃烧 排放清单 生物炭 碳减排潜力

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据 2004-2013年新疆绿洲区主要作物产量,采用排放因子法对秸秆燃烧污染物排放量和碳释放量进行了估算,结果表明,2013年新疆地区作物秸秆燃烧排放的CO2、CO、CH4、NMVOC、OC、BC、SO2、NOx、NH3和PM2.5的量分别为9.0×106 t、5.5×105 t、1.6×104 t、9.4×104 t、1.9×104 t、3.9×103 t、2.4×103 t、1.8×104 t、7.8×103 t和1.2×105 t,碳排放总量为2.7×106 t;在排放清单中,CO2和CO是主要污染物,分别占污染物排放总量的91.6%和5.6%;棉花秸秆为排放贡献最大的污染源,占总排放量的43.3%,其次是小麦秸秆和玉米秸秆,分别占28.3%和21.9%.在此基础上,基于生物炭固碳技术,对该区域作物秸秆转化为生物炭的固碳量和碳封存潜力进行了估算,结果表明,若把被燃烧的三类秸秆(棉花、小麦和玉米)转化为生物炭,则每年可减少该区域54.9%的碳排放量;若将作物秸秆全部转化为生物炭,每年将有3.6×106 t碳和1.3×107 t CO2被长期封存于生物炭中。可见,生物炭具有良好的固碳减排潜力,是一种可持续的碳封存技术

References

[1]  Kyeong E K, Gwi-Taek J, Changshin S, et al. Pretreatment of rapeseed straw by soaking in aqueous ammonia[J]. Bioprocess and Biosystems Engineering, 2012, 35(1-2):77-84.
[2]  Markus P, Kenneth K. Cell-wall carbohydrates and their modification as a resource for biofuels[J]. Plant Journal, 2008, 54:559-568.
[3]  杨增玲, 楚天舒, 韩鲁佳, 等. 秸秆饲料化集成技术模式及其区域适用性评价[J]. 农业工程学报, 2013, 29(23):186-193. YANG Zeng-ling, CHU Tian-shu, HAN Lu-jia, et al. Regional applicability evaluation of technical integration for straw feed utilization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23):186-193.
[4]  曹国良, 张小曳, 王 丹, 等. 秸秆露天焚烧排放量的TSP等污染物清单[J]. 农业环境科学学报, 2005, 24(4):800-804. CAO Guo-liang, ZHANG Xiao-ye, WANG Dan, et al. Inventory of emission of pollutants from open burning crop residue[J]. Journal of Agro-Environment Science, 2005, 24(4):800-804.
[5]  田贺忠, 赵 丹, 王 艳, 等. 中国生物质燃烧大气污染物排放清单[J]. 环境科学学报, 2011, 31(2):349-357. TIAN He-zhong, ZHAO Dan, WANG Yan, et al. Emission inventories of atmospheric pollutants discharged from biomass burning in China[J]. Acta Science Circumstantiae, 2011, 31(2):349-357.
[6]  Rodrigo I, Simon S, James H. Pyrolysis biochar systems for recovering biodegradable materials:A life cycle carbon assessment[J]. Waste Management, 2012, 32(5):859-868.
[7]  Jim H, Simon S, Saran S. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK[J]. Energy Policy, 2011, 39:2646-2655.
[8]  姜志翔, 郑 浩, 李锋民, 等. 生物炭碳封存技术研究进展[J]. 环境科学, 2013, 34(8):3327-3333. JIANG Zhi-xiang, ZHENG Hao, LI Feng-min, et al. Research progress on biochar carbon sequestration technology[J]. Environmental Science, 2013, 34(8):3327-3333.
[9]  Sohi S P, Krull E, Bol R. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105:47-82.
[10]  Streubel J D, Collins H P, Garcia-Perez M, et al. Influence of contrasting biochar types on five soils at increasing rates of application[J]. Soil Science Society of America Journal, 2011, 75:1402-1413.
[11]  陈温福, 张伟明, 孟 军. 生物炭与农业环境研究回顾与展望[J]. 农业环境科学学报, 2014, 33(5):821-828. CHEN Wen-fu, ZHANG Wei-ming, MENG Jun. Biochar and agro-ecological environment:Review and prospect[J]. Journal of Agro-Environment Science, 2014, 33(5):821-828.
[12]  Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010, 1:56.
[13]  Roberts K G, Gloy B A, Joseph S, et al. Life cycle assessment of biochar systems:Estimating the energetic, economic, and climate change potential[J]. Environmental Science and Technology, 2010, 44(2):827-833.
[14]  Lehmann J. Biological carbon sequestration must and can be a win-win approach[J]. Climatic Change, 2009, 97(3-4):459-463.
[15]  Pratt K, Moran D. Evaluating the cost-effectiveness of global biochar mitigation potential[J]. Biomass and Bioenergy, 2010, 34(8):1149-1158.
[16]  苏继峰, 朱 彬, 康汉青, 等. 长江三角洲地区秸秆露天焚烧大气污染物排放清单及其在空气质量模式中的应用[J]. 环境科学, 2012, 33(5):1418-1424. SU Ji-feng, ZHU Bin, KANG Han-qing, et al. Application pollutants released from crop residues at open burning in Yangtze River delta region in air quality model[J]. Environmental Science, 2012, 33(5):1418-1424.
[17]  李飞跃, 王建飞. 中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算[J]. 农业工程学报, 2013, 29(14):1-7. LI Fei-yue, WANG Jian-fei. Estimation of carbon emission from burning and carbon sequestration from biochar producing using crop straw in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14):l-7.
[18]  姜志翔, 郑 浩, 李锋民, 等. 生物炭技术缓解我国温室效应潜力初步评估[J]. 环境科学, 2013, 34(6):2486-2492. JIANG Zhi-xiang, ZHENG Hao, LI Feng-min, et al. Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China[J]. Environmental Science, 2013, 34(6):2486-2492.
[19]  Streets D G, Yarber K F, Woo J-H, et al. Biomass burning in Asia:Annual and seasonal estimates and atmospheric emissions[J]. Global Biogeochemical Cycles, 2003, 17(4):1079-1099.
[20]  Turn S Q, Jenkins B M, Chow J C, et al. Elemental characterization of particulate matter emitted from biomass burning:Wind tunnel derived source profiles for herbaceous and wood fuels[J]. Journal of Geophysical Research-Atmospheres, 1997, 102:3683-3700.
[21]  Andreae M O, Merlet P. Emissions of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15:955-966.
[22]  祝 斌, 朱先磊, 张元勋, 等. 农作物秸秆燃烧PM2.5排放因子的研究[J]. 环境科学研究, 2005, 18(2):18-33. ZHU Bin, ZHU Xian-lei, ZHANG Yuan-xun, et al. Emission factor of PM2.5 from crop straw burning[J]. Research of Environmental Sciences, 2005, 18(2):18-33.
[23]  Laird D A, Brown R C, Amonette J E, et al. Review of the pyrolysis platform for coproducing bio-oil and biochar[J]. Biofuels, Bioproducts and Biorefining, 2009, 3(5):547-562.
[24]  Roberts K G, Gloy B A, Stephen J, et al. Life cycle assessment of biochar systems:Estimating the energetic, economic, and climate change potential[J]. Environmental Science

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133