全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同剂型苯醚甲环唑和嘧菌酯及其原药对斑马鱼的急性毒性评价

DOI: 10.11654/jaes.2014.11.008, PP. 2125-2130

Keywords: 苯醚甲环唑,嘧菌酯,剂型,斑马鱼,急性毒性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为评价不同剂型农药对水生生物的毒性影响,采用半静态试验法,测定了不同剂型苯醚甲环唑和嘧菌酯及其原药对斑马鱼的急性毒性效应。结果表明,95%苯醚甲环唑原药、3%苯醚甲环唑悬浮种衣剂、400g·L-1苯醚甲环唑悬浮剂和60%苯醚甲环唑水分散粒剂对斑马鱼96h的LC50值与95%置信限(括号内)分别为1.05(0.93~1.13)、1.34(1.26~1.39)、1.44(1.37~1.52)、2.72(2.68~2.76)a.i.mg·L-1;93%嘧菌酯原药、10%嘧菌酯悬浮种衣剂、25%嘧菌酯悬浮剂和50%嘧菌酯水分散粒剂对斑马鱼96h的LC50值与95%置信限(括号内)分别为0.67(0.64~0.72)、0.88(0.85~0.92)、1.03(0.98~1.07)、1.60(1.10~1.81)a.i.mg·L-1。依据《化学农药环境安全评价试验准则》,不同剂型苯醚甲环唑及原药对斑马鱼的急性毒性级别均为中毒;25%嘧菌酯悬浮剂和50%嘧菌酯水分散粒剂对斑马鱼的急性毒性级别为中毒;93%嘧菌酯原药和10%嘧菌酯悬浮种衣剂对斑马鱼的急性毒性级别为高毒。上述结果表明,不同剂型苯醚甲环唑和嘧菌酯及其原药对斑马鱼的急性毒性存在差异,毒性从高到低依次为:原药、悬浮种衣剂、悬浮剂、水分散粒剂。

References

[1]  蔡道基. 化学农药环境安全评价试验准则[M]. 北京:国家环保总局, 2004:26-29. CAI Dao-ji. Testing guidelines of assessing environmental safety of chemical pesticides[M]. Beijing:State Environmental Protection Administration of China, 2004.
[2]  郭 晶, 宋文华, 丁 峰, 等. 三唑类杀菌剂对斑马鱼急性毒性研究[J]. 东南大学学报( 医学版), 2010, 29(4):402-406. GUO Jing, SONG Wen-hua, DING Feng, et al. Acute toxicity study on zebrafish(Danio rerio) exposure to triazole fungicides[J]. Journal of Southeast University(Medical Science Edition), 2010, 29(4):402-406.
[3]  李鹏鹏. 6种杀菌剂对斑马鱼急性毒性评价及中毒症状观察[J]. 世界农药, 2012, 34(4):44-46. LI Peng-peng. The acute toxicity assessment on zebrofish of six fungicides and poisoning symptoms observation[J]. World Pesticides, 2012, 34(4):44-46.
[4]  Munkvold G P, Dixon P M, Shriver J M, et al. Probabilities for profitable fungicide use against gray leaf spot in hybrid maize[J]. Phytopathology, 2001, 91(5):477-484.
[5]  Bartlett D W, Clough J M, Godwin J R, et al. The strobilurin fungicides[J]. Pest Management Science, 2002, 58(7):649-662.
[6]  张志勇, 王冬兰, 张存政, 等. 苯醚甲环唑在水稻和稻田中的残留[J]. 中国水稻科学, 2011, 25(3):339-342. ZHANG Zhi-yong, WANG Dong-lan, ZHANG Cun-zheng, et al. Difenoconalole residues in rice and paddy system[J]. Chinese Journal of Rice Science, 2011, 25(3):339-342.
[7]  谢 惠, 龚道新. 嘧菌酯在稻田水、土壤及水稻植株中的残留降解行为[J]. 湖南农业科学, 2013(1):80-83. XIE Hui, GONG Dao-xin. Degradation behavior of azoxystrobin residue in water and soil in paddy field and rice plant[J]. Hunan Agricultural Sciences, 2013(1):80-83.
[8]  金丽华, 陈长军, 王建新, 等. 嘧菌酯及SHAM 对4 种植物病原真菌的活性和作用方式研究[J]. 中国农业科学, 2007, 40(10):2206-2213. JIN Li-hua, CHEN Chang-jun, WANG Jian-xin, et al. Activity of azoxystrobin and SHAM of four plant pathogens[J]. Scientia Agricultura Sinica, 2007, 40(10):2206-2213.
[9]  Jacobson A R, Dousset S, Guichard N, et al. Diuron mobility through vineyard soils contaminated with copper[J]. Environmental Pollution, 2005, 138(2):250-259.
[10]  Frankart C, Eullaffroy P, Vernet G. Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations[J]. Ecotoxicology and Environmental Safety, 2002, 53(3):439-445.
[11]  Gopinath K, Radhakrishnan N V, Jayaraj J. Effect of propiconazole and difenoconazole on the control of anthracnose of chilli fruits caused by Colletotrichum capsici[J]. Crop Protection, 2006, 25(9):1024-1031.
[12]  Latiff KA, Bakar N K A, Isa N M. Preliminary study of difenoconazole residues in rice paddy watersheds[J]. Malaysian Journal of Science, 2010, 29(1):73-79.
[13]  Gustafsson K, Blidberg E, Eifgren I K, et al. Direct and indirect effects of the fungicide azoxystrobin in outdoor brackish water microcosms[J]. Ecotoxicotogy, 2010, 19(2):431-444.
[14]  Satapornvanit K, Baird D J, Little D C, et al. Risks of pesticide use in aquatic ecosystems adjacent to mixed vegetable and monocrop fruit growing areas in Thailand[J]. Australasian Journal of Ecotoxicology, 2004, 10(1):85-95.
[15]  Hinfray N, Porcher J, Brion F. Inhibition of rainbow trout(Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances[J]. Comparative Biochemistry and Physiology, Part C, 2006, 144(3):252-262.
[16]  Mu X Y, Pang S, Sun X Z, et al. Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays[J]. Environmental Pollution, 2013, 175(4):147-157.
[17]  Ochoa-Acuna H G, Bialkowskil W, Yale G, et al. Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna[J]. Ecotoxicology, 2009, 18(4):440-446.
[18]  陈爱梅, 王金花, 夏晓明, 等. 不同剂型吡虫啉对蚯蚓和斑马鱼的急性毒性评价[J]. 农业环境科学学报, 2013, 32(9):1758-1763. CHEN Ai-mei, WANG Jin-hua, XIA Xiao-ming, et al. Acute toxicity of imidacloprid with different formulation on zebrafish[J]. Journal of Agro-Environment Science, 2013, 32(9):1758-1763.
[19]  才 冰, 袁善奎, 曲甍甍, 等. 360种农药制剂对斑马鱼的急性毒性研究[J]. 农药科学与管理, 2011, 32(1):31-34. CAI Bing, YUAN Shan-kui, QU Meng-meng, et al. Study on the acute toxicity of 360 formulated pesticides to Brachydanio rerio[J]. Pesticide Science and Administration, 2011, 32(1):31-34.
[20]  Sipes N S, Padilla S, Knudsen T B. Zebrafish:As an integrative model for twenty-first century toxicity testing[J]. Birth Defects Research, 2011, 93(3):256-267.
[21]  刘金凤, 吴慧明, 马新生, 等. 2种不同剂型阿维菌素在土壤和田水中的消解动态[J]. 浙江农业学报, 2011, 23(4):766-770. LIU Jin-feng, WU Hui-ming, MA Xin-sheng, et al. Degradation of two different formulations of Abamectin in paddy soil and paddy water[J]. Acta Agriculturae Zhejiangensis, 2011, 23(4):766-770.
[22]  OECD. Fish, acute toxicity test. OECD guideline for testing of chemicals 203[S]. 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133