全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

低浓度硫丹对棕壤中主要酶活性及细菌群落结构的影响

DOI: 10.11654/jaes.2014.11.012, PP. 2149-2154

Keywords: 硫丹,土壤酶,有机氯农药,PCR-DGGE

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解硫丹对棕壤生态系统的毒性影响,采用室内避光培养模拟实验,设定硫丹在土壤中的浓度分别为0.1、1、10mg·kg-1,取样时间为7、14、21、28d,测定土壤中脲酶、脱氢酶和β-葡糖苷酶活性的变化,同时采用变性梯度凝胶电泳(PCR-DGGE)分子指纹技术研究硫丹在不同培养时间对土壤中细菌群落结构的影响。结果表明:土壤脲酶活性与对照相比无显著差异;脱氢酶活性受到显著抑制,且随着硫丹浓度增大,抑制作用增强;土壤β-葡糖苷酶活性则被显著激活。经BLAST程序与GenBank数据库进行比对分析,低浓度硫丹处理在培养周期28d内,对棕壤中细菌群落结构没有产生显著的干扰作用。

References

[1]  刘绍雄, 王明月, 王 娟, 等. 基于 PCR-DGGE 技术的剑湖湿地湖滨带土壤微生物群落结构多样性分析[J]. 农业环境科学学报, 2013, 32(7):1405-1412. LIU Shao-xiong, WANG Yue-ming, WANG Juan, et al. Analyzing soil microbial community structure diversity from Jian Wetland Lakeside zone using PCR-DGGE technique[J]. Journal of Agro-Environmental Science, 2013, 32(7):1405-1412.
[2]  Fantroussi S, Verschuere L, Verstraete W, et al. Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles[J]. Applied and Environmental Microbiology, 1999, 65, 982-988.
[3]  Bandick A K, Dick R P. Field management effects on soil enzyme activities[J]. Soil Biology and Biochemistry, 1999, 31(11):1471-1479.
[4]  薛 冬, 姚槐应, 黄昌勇. 茶园土壤微生物群落基因多样性[J]. 应用生态学报, 2007, 18(4):843-847. XUE Dong, YAO Huan-ying, HUANG Chang-yong. Genetic diversity of microbial communities in tea orchad soil[J]. Chinese Journal of Applied Ecology, 2007, 18(4):843-847.
[5]  Jia H, Li Y F, Wang D, et al. Endosulfan in China 1:Gridded usage inventories[J]. Environmental Science and Pollution Research, 2009, 16(3):295-301.
[6]  Jia H, Sun Y, Li Y F, et al. Endosulfan in China 2:Emissions and residues[J]. Environmental Science and Pollution Research, 2009, 16(3):302-311.
[7]  迭庆杞, 聂志强, 黄启飞, 等. 珠江三角洲土壤中有机氯农药的分布特征[J]. 农业环境科学学报, 2014, 33(2):298-304. DIE Qing-qi, NIE Zhi-qiang, HUANG Qi-fei, et al. Organochlorine(OCPs) in soils of Pearl River Delta, China[J]. Journal of Agro-Environment Science, 2014, 33(2):298-304.
[8]  王兴琴, 花日茂, 潘锦勇, 等. 安徽农田表层土壤中有机氯农药的分布及其组成[J]. 应用生态学报, 2012, 22(12):3285-3292. WANG Xing-qin, HUA Ri-mao, PAN Jin-yong, et al. Distribution and composition of organochlorine pesticides in farmland top soils of Anhui Province[J]. Chinese Journal of Applied Ecology, 2012, 22(12):3285-3292.
[9]  Awasthi N, Ahuja R, Kumar A. Factors influencing the degradation of soil-applied endosulfan isomers[J]. Soil Biology and Biochemistry, 2000, 32(11):1697-1705.
[10]  Preston S, Wirth S, Ritz K, et al. The role played by microorganisms in the biogenesis of soil cracks:Importance of substrate quantity and quality[J]. Soil Biology and Biochemistry, 2001, 33(12):1851-1858.
[11]  Lejon D P H, Chaussod R, Ranger J, et al. Microbial community structure and density under different tree species in an acid forest soil(Morvan, France)[J]. Microbial Ecology, 2005, 50(4):614-625.
[12]  Bauhus J, Khanna P K. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting cycles[J]. Biology and Fertility of Soils, 1994, 17(3):212-218.
[13]  Defo M A, Njine T, Nola M, et al. Microcosm study of the long term effect of endosulfan on enzyme and microbial activities on two agricultural soils of Yaounde-Cameroon[J]. African Journal of Agricultural Research, 2011, 6(9):2039-2050.
[14]  Kalyani S S, Sharma J, Dureja P, et al. Influence of endosulfan on microbial biomass and soil enzymatic activities of a tropical alfisol[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(3):351-356.
[15]  Kong L F, Zhu S Y, Zhu L S, et al. Colonization of Alcaligenes faecalis strain JBW4 in natural soils and its detoxification of endosulfan[J]. Applied Microbiology and Biotechnology, 2014, 98(3):1407-1416.
[16]  Nannipieri P, Ceccanti B, Cervelli S, et al. Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil[J]. Soil Science Society of America Journal, 1980, 44:1011-1016.
[17]  Tabatabai M A. Soil enzymes[M]. Madison:Soil Science Society of America, 1994.
[18]  袁颖红, 樊后保, 刘文飞, 等. 模拟氮沉降对杉木人工林土壤酶活性及微生物群落功能多样性的影响[J]. 土壤, 2013, 45(1):120-128. YUAN Ying-hong, FAN Hou-bao, LIU Wen-fei, et al. Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation[J]. Soils, 2013, 45(1):120-128.
[19]  Nasreen C, Mohiddin G J, Srinivasulu M, et al. Interaction effects of insecticides on enzyme activities in black clay soil from groundnut(Arachis hypogaea L.) fields[J]. Environmental Research, Engineering and Management, 2012, 60(2):21-28.
[20]  Nasreen C, Mohiddin G J, Srinivasulu M, et al. Responses of soil enzymes to insecticides in groundnut(Arachis hypogaea L.) cultivated black soil[J]. World Journal of Agricultural Sciences, 2012, 8(2):163-168.
[21]  熊佰炼, 张进忠, 代 娟, 等. 硫丹及其主要代谢产物对紫色土中酶活性的影响[J]. 生态学报, 2013, 33(15):4649-4657. XIONG Bai-lian, ZHANG Jin-zhong, DAI Juan, et al. Influence of endosulfan and its metabolites on enzyme activities in purple soil[J]. Acta Ecologica Sinica, 2013, 33(15):4649-4657.
[22]  Giri P K, Saha M, Halder M P, et al. Effect of pesticides on microbial transformation of sulphur in soil[J]. Journal of Soil Science and Environmental Management, 2011, 2(4):97-102.
[23]  Hussain S, Siddique T, Saleem M, et al. Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions[J]. Advances in Agronomy, 2009, 102:159-200.
[24]  沈芳芳, 袁颖红, 樊后保, 等. 氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J]. 生态学报, 2012, 32(2):517-527. SHEN Fang-fang, YUAN Ying-hong, FAN Hou-bao, et al. Effects of elevated nitrogen deposition on soil organic carbon mineralization and soil enzyme activities in a Chinese fir plantation[J]. Acta Ecologica Sinica, 2012, 32(2):517-527.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133