全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

黑臭底泥硝酸钙原位氧化的温度影响及微生物群落结构全过程分析

DOI: 10.11654/jaes.2015.06.024

Keywords: 黑臭底泥 硝酸钙 温度 微生物群落结构 DGGE

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探明低温的影响, 在室温下(12~22 ℃)模拟研究了投加硝酸钙进行底泥原位修复反硝化除硫的效果, 同时在恒温条件(30 ℃)下研究了硝酸钙投加后、反硝化期间和硝酸盐耗尽后底泥微生物群落结构全过程变化。结果表明, 硝酸钙对底泥硫化物有明显的去除效果, 其中温度是影响硫化物去除的关键因素, 当温度低于15 ℃, 硫化物去除缓慢。DGGE联合克隆测序结果显示投加硝酸钙促进了底泥微生物多样性的增加, 原泥、投加硝酸钙当天、反硝化期间和硝酸盐耗尽后4个时期底泥微生物群落结构存在明显差异。原底泥以兼性硫氧化菌Sulfuricurvum sp.(相似度96%)为主, 投加硝酸钙后, 异养反硝化菌Thermomonas sp.(相似度99%)数量增加;而在硝酸盐耗尽末期, 反硝化菌条带变弱, 而具备丙酸盐氧化功能的Smithella sp.(相似度97%)逐渐成为优势菌群。研究结果可为黑臭底泥硝酸钙原位氧化提供技术参考, 同时从微生物学角度进一步解释了硝酸钙对底泥硫化物和有机物的去除机理

References

[1]  许炼烽, 邓绍龙, 陈继鑫, 等。 河流底泥污染及其控制与修复[J]. 生态环境学报。 2014(10):1708-1715. XU Lian-feng, DENG Shao-long, CHEN Ji-xin, et al. River sediment pollution and its control and restoration[J]. Ecology and Environmental Sciences, 2014(10):1708-1715.
[2]  刘近, 邓代永, 孙国萍, 等。 硝酸盐对沉积物中有机物氧化减量及微生物群落结构的影响[J]. 环境科学, 2013(7):2847-2854. LIU Jin, DENG Dai-yong, SUN Guo-ping, et al. Effects of nitrate on organic removal and microbial community structure in the sediments[J]. Environmental Science, 2013(7):2847-2854.
[3]  Murphy T P, Lawson A, Kumagai M, et al. Review of emerging issues in sediment treatment[J]. Aquatic Ecosystem Health and Management, 1999, 2(4):419-434.
[4]  Shao M, Zhang T, Fang H H, et al. The effect of nitrate concentration on sulfide-driven autotrophic denitrification in marine sediment[J]. Chemosphere, 2011, 83(1):1-6.
[5]  Zhang M, Zhang T, Shao M F, et al. Autotrophic denitrification in nitrate-induced marine sediment remediation and sulfurimonas denitrificans-like bacteria[J]. Chemosphere, 2009, 76(5):677-682.
[6]  Yamada T M, Sueitt A P E, Beraldo D A S, et al. Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir:Microcosm experiments[J]. Water Research, 2012, 46(19):6463-6475.
[7]  Yu G, Lei H, Bai T, et al. In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments[J]. Journal of Environmental Sciences, 2009, 21(7):877-883.
[8]  刘树娟, 陈磊, 钟润生, 等。 硝酸钙对河流底泥中含硫化合物嗅味原位控制[J]. 环境科学研究, 2012(6):691-698. LIU Shu-juan, CHEN Lei, ZHONG Run-sheng, et al. In situ control of odor in sulfide-containing compounds with calcium nitrate in river sediments[J]. Research of Environmental Sciences, 2012(6):691-698.
[9]  陈磊, 王凌云, 刘树娟, 等。 硝酸钙对深圳河底泥臭味及生物化学特性的影响[J]. 哈尔滨工业大学学报, 2013(6):107-113. CHEN Lei, WANG Ling-yun, LIU Shu-juan, et al. Effect of calcium nitrate on odor and properties of chemistry in sediment of Shenzhen River[J]. Journal of Harbin Institute of Technology, 2013(6):107-113.
[10]  Ripl W. Biochemical oxidation of polluted lake sediment with nitrate:A new lake restoration method[J]. Ambio, 1976, 5(3):132-135.
[11]  Brunet R C, Garcia-Gil L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiology Ecology, 1996, 21(2):131-138.
[12]  Xu M, Zhang Q, Xia C, et al. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments[J]. Isme Journal, 2014, 8(9):1932-1944.
[13]  马娟, 彭永臻, 王丽, 等。 温度对反硝化过程的影响以及pH 值变化规律[J]. 中国环境科学, 2008, 28(11):1004-1008. MA Juan, PENG Yong-zhen, WANG Li, et al. Effect of temperature on denitrification and profiles of pH during the process[J]. China Environmental Science, 2008, 28(11):1004-1008.
[14]  徐亚同。 pH值、温度对反硝化的影响[J]. 中国环境科学, 1994, 14(4):308-313. XU Ya-tong. The influence of pH values and temperature on denitrification[J]. China Environmental Science, 1994, 14(4):308-313.
[15]  李艳梅。 硫自养反硝化细菌脱氮除硫性能研究[D]. 大连理工大学。 2012. LI Yan-mei. Research of Performances of sulfur autotrophic denitrifying bacteria for nitrate and thiosulfate removal[D]. Dalian University of Technology, 2012.
[16]  Yu G W, Lin P Z, Chong Y X, et al. Release and transformation of nitrogen from sediments during in-situ treatment with calcium nitrate injection for odor control[J]. Advanced Materials Research, 2012:518-523, 1396-1401.
[17]  林玉环, 郭明新, 庄岩。 底泥中酸性挥发硫及同步浸提金属的测定[J]. 环境科学学报, 1997(3):97-102. LIN Yu-huan, GUO Ming-xin, ZHUANG Yan. Determination of acid volatile sulfide and simultaneously exteracted metals in sediment[J]. Journal of Environmental Sciences, 1997(3):97-102.
[18]  Beristain Cardoso R, Sierra-Alvarez R, Rowlette P, et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95(6):1148-1157.
[19]  宗栋良, 张光明。 硝酸钙在底泥修复中的作用机理及应用现状[J]. 中国农村水利水电, 2006(04):52-54. ZONG Dong-liang, ZHANG Guang-ming. The role of calcium nitrate in sediment repair mechanism and application status[J]. China Rural Water and Hydropower, 2006(04):52-54.
[20]  Nemati M, Jenneman G E, Voordouw G. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion[J]. Biotechnology Progress, 2001, 17(5):852-859.
[21]  Fromin N, Hamelin J, Tarnawski S, et al. Statistical analysis of denaturing gel electrophoresis(DGE) fingerprinting patterns[J]. Environmental Microbiology, 2002, 4(11):634-643.
[22]  Fry J C, Webster G, Cragg B A, et al. Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin[J]. Fems Microbiology Ecology, 2006, 58(1):86-98.
[23]  倪加加, 余育和, 吴含含, 等。 不同DGGE谱带信息提取方法对分析结果的影响[J]. 水生生物学报, 2012(5):1009-1011. NI Jia-jia, YU Yu-he, WU Han-han, et al. Effects generated by different band extracting methods in the analysis of DGGE profile[J]. Acta Hydrobiologica Sinica, 2012(5):1009-1011.
[24]  孙寓姣, 赵轩, 王蕾, 等。 沣河水系脱氮微生物群落结构研究[J]. 生态环境学报, 2014(9):1451-1456. SUN Yu-jiao, ZHAO Xuan, WANG Lei, et al. Study on the microorganisms of nitrogen cycle in Fenghe river[J]. Ecology and Environmental Sciences, 2014(09):1451-1456.
[25]  姚丽平。 城市黑臭河道底泥微生物群落结构对人工曝气的响应特征及机理研究[D]. 华东师范大学, 2014. YAO Li-ping. Study on mechanism and response of microbial community structure under different artificial aeration in urban black-odorous river sediment[D]. East China Normal University, 2014.
[26]  郭怡雯, 张明, 陈熙。 硝酸盐(钙)颗粒应用于底泥原位修复的研究[J]. 环境研究与监测, 2009(1):51-55. GUO Yi-wen, ZHANG Ming, CHEN Xi. Calcium nitrate(particle) particles in the study of sediment in situ repair[J]. Environmental Study and Monitoring, 2009(1):51-55.
[27]  Yang X, Huang S, Wu Q, et al. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils and Sediments, 2012,12(9):1435-1444.
[28]  Giblin A E, Tobias C R, Song B, et al. The importance of dissimilatory nitrate reduction to ammonium(DNRA) in the nitrogen cycle of coastal ecosystems[J]. Oceanography, 2013, 26(3SI):124-131.
[29]  Burgin A J, Hamilton S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Frontiers in Ecology and the Environment, 2007, 5(2):89-96.
[30]  Muehe E M, Gerhardt S, Schink B, et al. Ecophysiology and the energetic benefit of mixotrophic Fe(Ⅱ) oxidation by various strains of nitrate-reducing bacteria[J]. Fems Microbiology Ecology, 2009,70(3):335-343.
[31]  薛庆中, 等。 DNA和蛋白质序列数据分析工具(第三版)[M]. 北京:科学出版社, 2012:61. XUE qing-zhong, et al. DNA and protein sequence data analysis tool[M]. 3rd edition. Beijing:Science Press, 2012:61.
[32]  Kodama Y, Watanabe K. Sulfuricurvum kujiense gen nov, sp nov, a facultatively anaerobic,chemolithoautotrophic,sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6):2297-2300.
[33]  De Jonge M, Teuchies J, Meire P, et al. The impact of increased oxygen conditions on metal-contaminated sediments part I:Effects on redox status, sediment geochemistry and metal bioavailability[J]. Water Research, 2012, 46(7):2205-2214.
[34]  Kim M K, Im W, In J, et al. Thermomonas koreensis sp nov, a mesophilic bacterium isolated from a ginseng field[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(7):1615-1619.
[35]  Liu Y, Balkwill D L, Aldrich H C, et al. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen nov, sp nov, and Syntrophobacter wolinii[J]. International Journal of Systematic Bacteriology, 1999, 49(2):545-556.
[36]  Sun W, Cupples A M. Diversity of five anaerobic toluene-degrading microbial communities investigated using stable isotope probing[J]. Applied and Environmental Microbiology, 2012, 78(4):972-980.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133