全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

丛枝菌根真菌对旱稻生长、Cd吸收累积和土壤酶活性的影响

DOI: 10.11654/jaes.2015.06.011

Keywords: 土壤污染 镉 旱稻 丛枝菌根真菌 土壤酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过盆栽实验, 研究了土壤不同Cd 添加水平(0、2、10 mg·kg-1)下, 接种丛枝菌根真菌摩西球囊霉(Glomus mosseae,GM)对旱稻(Oryza Sativa L.)生长、Cd 吸收累积和根际土壤酶(脲酶和蔗糖酶)活性的影响。结果表明, GM 菌可有效侵染旱稻根系, 其侵染率为37%~72%,随 Cd 污染程度增加而显着降低。接种 GM 菌使旱稻根际土壤脲酶及蔗糖酶活性显着提高, 提高幅度为9.6%~44.5%,从而促进根际土壤碳素和氮素循环, 并显着提高旱稻根系、地上部和籽粒的生物量, 提高幅度为10.4%~57.1%;接种GM菌同时可降低旱稻对Cd的富集和转运能力, 从而显着降低其各部分尤其是籽粒中的Cd含量, 降幅为26.8%~57.1%

References

[1]  刘侯俊, 梁吉哲, 韩晓日, 等。 东北地区不同水稻品种对Cd的累积特性研究[J]. 农业环境科学学报, 2011, 30(2):220-227. LIU Hou-jun, LIANG Ji-zhe, HAN Xiao-ri, et al. Accumulation and distribution of cadmium in different rice cultivars of Northeastern China[J]. Journal of Agro-Environment Science, 2011, 30(2):220-227.
[2]  张良运, 李恋卿, 潘根兴。 南方典型产地大米Cd、Zn、Se含量变异及其健康风险探讨[J]. 环境科学, 2009, 30(9):2792-2797. ZHANG Liang-yun, LI Lian-qing, PAN Gen-xing. Variation of Cd, Zn and Se contents of polished rice and the potential health risk for subsistence-diet farmers from typical areas of South China[J]. Environment Science, 2009, 30(9):2792-2797.
[3]  陈爱葵, 王茂意, 刘晓海, 等。 水稻对重金属镉的吸收及耐性机理研究进展[J]. 生态科学, 2013, 32(4):514-522. CHEN Ai-kui, WANG Mao-yi, LIU Xiao-hai, et al. Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms[J]. Ecological Science, 2013, 32(4):514-522.
[4]  Li W C, Ouyang Y, Ye Z H. Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine[J]. Environmental Toxicology and Chemistry, 2015, 33(11):2438-2447.
[5]  Smith S E, Read D J. Mycorrhizal symbiosis[M]. Cambridge, UK:Academic Press, 2008.
[6]  Abbaspour H, Saeidi-Sar S, Afshari H, et al. Tolerance of mycorrhizal infected pistachio(Pistacia vera L.) seedling to drought stress under glasshouse conditions[J]. Journal of Plant Physiology, 2012, 169(7):704-709.
[7]  Cicatelli A, Lingua G, Todeschini V, et al. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression[J]. Annals of Botany, 2010, 106(5):791-802.
[8]  刘灵芝, 张玉龙, 李培军, 等。 丛枝菌根真菌(Glomus mosseae)对玉米吸镉的影响[J]. 土壤通报, 2011, 42(3):568-572. LIU Ling-zhi, ZHANG Yu-long, LI Pei-jun, et al. Effect of arbuscular mycorrhizal fungi(Glomus mosseae) on Cd accumulation in maize plants[J]. Chinese Journal of Soil Science, 2011, 42(3):568-572.
[9]  Shahabivand S, Maivan H Z, Goltapeh E M, et al. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity[J]. Plant Physiology and Biochemistry, 2012, 60(7):53-58.
[10]  周礼恺。 土壤酶学[M]. 北京:科学出版社, 1987:118-159. ZHOU Li-kai. Soil enzymology[M]. Beijing:Science Press, 1987:118-159.
[11]  Garcia-Ruiz R, Ochoa V, Hinojosa M B, et al. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems[J]. Soil Biology and Biochemistry, 2008, 40(9):2137-2145.
[12]  Malley C, Nair J, Ho G. Impact of heavy metals on enzymatic activity of substrate and on composting worms Eiseniafetida[J]. Bioresurce Technology, 2006, 97(13):1498-1502.
[13]  Zhang X H, Zhu Y G, Chen B D, et al. Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil[J]. Journal of Plant Nutrition, 2005, 28(12):2065-2077.
[14]  张旭红, 林爱军, 张莘, 等。 Cu污染土壤接种丛枝菌根真菌对旱稻生长的影响[J]. 环境工程学报, 2012, 6(5):1677-1681. ZHANG Xu-hong, LIN Ai-jun, ZHANG Xin, et al. Effects of arbuscular mycorrhizal fungi(AMF) on growth of upland rice in soil contaminated by Cu[J]. Chinese Journal Environmental Engineering, 2012, 6(5):1677-1681.
[15]  王立, 安广楠, 马放, 等。 AMF对镉污染条件下水稻抗逆性及根际固定性的影响[J]. 农业环境科学学报, 2014, 33(10):1882-1889. WANG Li, AN Guang-nan, MA Fang, et al. Effects of arbuscular mycorrhizal fungi on cadmium tolerance and rhizospheric fixation of rice[J]. Journal of Agro-Environment Science, 2014, 33(10):1882-1889.
[16]  刘素慧, 刘世琦, 张自坤, 等。 大蒜连作对其根际土壤微生物和酶活性的影响[J]. 中国农业科学, 2010, 43(5):1000- 1006. LIU Su-hui, LIU Shi-qi, ZHANG Zi-kun, et al. Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities[J]. Scientia Agricultura Sinica, 2010, 43(5):1000-1006.
[17]  刘润进, 陈应龙。 菌根学[M]. 北京:科学出版社, 2007 :376-388. LIU Run-jin, CHEN Ying-long. The Mycorrhizology[M]. Beijing:Science Press, 2007:376-388.
[18]  关松荫。 土壤酶及其研究法[M]. 北京:农业出版社, 1986:35-46. GUAN Song-yin. Soil enzymes and their study method[M]. Beijing:China Agricultural Press, 1986:35-46.
[19]  黄云凤, 高扬, 毛亮, 等。 Cd、Pb单一及复合污染下土壤酶生态抑制效应及生态修复基准研究[J]. 农业环境科学学报, 2011, 30(11):2258-2264. HUANG Yun-feng, GAO Yang, MAO Liang, et al. The ecological inhibition effect of soil enzyme activity and ecological restoration baseline under Cd and Pb single and conbined pollution[J]. Journal of Agro-Environment Science, 2011, 30(11):2258-2264.
[20]  高大翔, 郝建朝, 金建华, 等。 重金属汞、镉单一胁迫及复合胁迫对土壤酶活性的影响[J]. 农业环境科学学报, 2008, 27(3):903-908. GAO Da-xiang, HAO Jian-chao, JIN Jian-hua, et al. Effects of single stress and combined stress of Hg and Cd on soil enzyme activities[J]. Journal of Agro-Environment Science, 2008, 27(3):903-908.
[21]  卢显芝, 金建华, 郝建朝, 等。 不同土层土壤酶活性对重金属汞和镉胁迫的响应[J]. 农业环境科学学报, 2009, 28(9):1844-1848. LU Xian-zhi, JIN Jian-hua, HAO Jian-chao, et al. Responses of soil enzyme activities in different soil layers to single and combined stress of Hg and Cd[J]. Journal of Agro-Environment Science, 2009, 28(9):1844-1848.
[22]  Gao X P, Akhter F, Tenuta M, et al. Mycorrhizal colonization and grain Cd concentration of field-grown durum wheat in response to tillage, preceding crop and phosphorus fertilization[J]. Journal of the Science of Food and Agriculture, 2010, 90(5):750-758.
[23]  Malekzadeh E, Alikhani H A, Savaghebi-Firoozabadi G R, et al. Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils[J]. Spanish Journal of Agricultural Research, 2011, 9(4):1213-1223.
[24]  Shahabivand S, Maivan H Z, Goltapeh E M, et al. The effects of root endophyte and arbuscular mycorrhizal fungi on growth and cadmium accumulation in wheat under cadmium toxicity[J]. Plant Physiology and Biochemistry, 2012, 60(7):53-58.
[25]  Maiti D, Toppo N N, Variar M. Integration of crop rotation and arbuscular mycorrhiza(AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice(Oryza sativa L.)[J]. Mycorrhiza, 2011, 21(8):659-667.
[26]  宋福强, 孟剑侠, 周宏, 等。 丛枝菌根真菌对紫穗槐固氮能力的影响[J]. 林业科技, 2009, 34(5):25- 28. SONG Fu-qiang, MENG Jian-xia, ZHOU Hong, et al. Effect of arbuscular mycorrhizal fungi on the ability of nitrogen fixation of amorpha fruticosa[J]. Forestry Science and Technology, 2009, 34(5):25- 28.
[27]  谢靖, 唐明。 黄土高原紫穗槐丛枝菌根真菌与土壤因子和球囊霉素空间分布的关系[J]. 西北植物学报, 2012, 32(7):1440-1447. XIE Jing, TANG Ming. Spatial distribution of arbuscular mycorrhizal fungi, soil factors and glomalin in the rhizosphere of amorpha fruticosa grown on the loess plateau[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(7):1440-1447.
[28]  Aloui A, Dumas-Gaudot E, Daher Z, et al. Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation[J]. Plant Physiology and Biochemistry, 2012, 60(8):233-239.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133