全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铜尾矿自然定居腺柳对重金属吸收及分布的研究

DOI: 10.11654/jaes.2013.09.010, PP. 1771-1777

Keywords: 铜尾矿,腺柳,重金属,富集系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

选取安徽安庆月山铜尾矿废弃地的自然定居腺柳为研究对象,探讨自然定居腺柳对重金属Cd、Pb、Zn、Cu的吸收、转运以及在其根茎木质部、皮部、叶部中的分布差异。研究发现,腺柳植株体内的不同器官对重金属Cd、Pb、Zn和Cu的吸收与分布存在一定的差异。重金属Cd在根皮部含量最高,达到1438.919μg·kg-1,茎木质部含量最低,为228.065μg·kg-1;Pb在根木质部含量最高,为4010.225μg·kg-1,而在根皮部含量最低,为272.312μg·kg-1;Zn在茎皮部含量最高,为137.563mg·kg-1,茎木质部含量最低,为11.554mg·kg-1;Cu在茎皮部含量最高,为36.024mg·kg-1,而茎木质部含量最低为19.786mg·kg-1。腺柳对不同重金属的富集系数大小顺序为Cd>Zn>Cu>Pb。腺柳植株叶片中的Cd含量与铜尾矿废弃地基质土中重金属Cd、Pb、Zn、Cu的含量呈显著正相关(P<0.05),叶片中Zn含量与铜尾矿基质土中全氮的含量达到极显著正相关(P<0.01),但腺柳植株中Pb和Cu的含量与土壤中对应元素含量没有显著相关性。结果表明腺柳对土壤重金属Cd具有较好的富集特性,可用于受重金属Cd污染土壤的植物修复。

References

[1]  孙庆业, 刘付程. 铜陵铜尾矿理化性质的变化对植被重建的影响[J]. 农村生态环境, 1998, 8(1):21-23, 60.SUN Qing-ye, LIU Fu-cheng. Study on the effects of physical and chemical property changes of copper mine tailings on vegetation rehabilitation in Tongling copper mine[J]. Rural Eco-Environment, 1998, 14(1):21-23, 60.
[2]  田胜尼, 王峥峰, 高三红, 等. 用ISSR分子标记检测不同尾矿废弃地白茅居群的遗传多样性[J]. 中山大学学报(自然科学版), 2006, 45(5):87-92.TIAN Sheng-ni, WANG Zheng-feng, GAO San-hong, et al. Genetic diversity of imperata cylindrica populations colonizing on the metal tailings waste lands by ISSR Technique[J]. Acta Scientiarum Naturalium Universitatis Sunyatsen(Natural Science Edition), 2006, 45(5):87-92.
[3]  孙庆业, 田胜尼. 土壤污染与几种土壤酶的活性[J]. 土壤, 2000, 32(1):54-56.SUN Qing-ye, TIAN Sheng-ni. Tailings pollution and activities of soil enzyme[J]. Soil, 2000, 32(1):54-56.
[4]  王克华, 刘胜祥. 金属尾矿废弃地的生态恢复[J]. 四川环境, 2003, 22(1):13-17.WANG Ke-hua, LIU Sheng-xiang. The eco-restoration on metal mine waste tailing dumps[J]. Sichuan Environment, 2003, 22(1):13-17.
[5]  张 飞, 郭文彬, 柳淑珍, 等. 矿产弃地的生态恢复研究[J]. 中国安全生产科学技术, 2009, 5(3):120-123.ZHANG Fei, GUO Wen-bin, LIU Shu-zhen, et al. Study on ecological restoration in mining wasteland[J]. Journal of Safety Science and Technology, 2009, 5(3):120-123.
[6]  杨世勇, 谢建春, 刘登义. 铜陵铜尾矿复垦现状及植物在铜尾矿上的定居[J]. 长江流域资源与环境, 2004, 13(5):488-493.YANG Shi-yong, XIE Jian-chun, LIU Deng-yi. Reclamation and plant colonization in copper mine tailings in Tongling, Anhui Province[J]. Resources and Environment in the Yangtze Basin, 2004, 13(5):488-493.
[7]  Chen Y Q, Ren G J, An S Q, et al. Changes of bacterial community structure in copper mine tailings after colonization of reed(Phragmites communis)[J]. Pedosphere, 2008, 18(6):731-740.
[8]  Conesa H M, Robinson B H, Schulin R, et al. Growth of lygeum spartum in acid mine tailings:Response of plants developed from seedlings, rhizomes and at field conditions[J]. Environmental Pollution, 2007, 145:700-707.
[9]  武正华, 张宇峰, 王晓蓉, 等. 土壤重金属污染植物修复及基因技术的应用[J]. 农业环境保护, 2002, 21(1):84-86.WU Zheng-hua, ZHANG Yu-feng, WANG Xiao-rong, et al. Application of gene technology in phytoremediation for contaminated soil by heavy metals[J]. Agro-environmental Protection, 2002, 21(1):84-86.
[10]  张 楠. 土壤重金属污染的特点及防治措施探讨[J]. 现代农业, 2010(11):24-25.ZHANG Nan. Characteristics of heavy metal contaminated soils and exploration for control measures[J]. Modern Agriculture, 2010(11):24-25.
[11]  Pulford I D, Watson C. Phytoremediation of heavy metal-contaminated land by trees:A review[J]. Environment International, 2003, 29(4):529-540.
[12]  刑前国, 潘伟斌, 张太平. 重金属污染土壤的植物修复技术[J]. 生态科学, 2003, 22(3):275-279.XIN Qian-guo, PAN Wei-bin, ZHANG Tai-ping. Phytoremediation technology of heavy metal contaminated soils[J]. Ecologic Science, 2003, 22(3):275-279.
[13]  Gerhandt K E, Huang X D, Glick B R, et al. Phytoremediation and rhizoremediation of organic soil contaminants:Potential and challenges[J]. Plant Science, 2009, 176(1):20-30.
[14]  张 宏, 沈章军, 陈 政, 等. 铜尾矿区9种优势植物体内重金属和氮磷含量研究[J]. 生态环境学报, 2011, 20(10):1478-1484.ZHANG Hong, SHEN Zhang-jun, CHEN Zheng, et al. An investigation of heavy-metal, nitrogen and phosphorus concentration in nine dominant plant species in a copper mine tailings area[J]. Ecology and Environmental Sciences, 2011, 20(10):1478-1484.
[15]  Zu Y Q, Li Y, et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China[J]. Environment International, 2004, 30(4):567-576.
[16]  Liu Y G, Zhang H Z, et al. Heavy metal accumulation in plants on Mn mine Tailings[J]. Pedosphere, 2006, 16(1):131-136.
[17]  白 杨, 宋迎迎, 关文彬, 等. 柳属的地理分布及特点[J]. 中国财富科技, 2009, 4:200-201.BAI Yang, SONG Ying-ying, GUAN Wen-bin, et al. Geographic distribution and characteristics of Salix[J]. Fortune World, 2009, 4:200-201.
[18]  徐莹梅, 田胜尼, 周疆丽. 铜尾矿废弃地定居的旱柳群落结构特征研究[J]. 安徽农业科学, 2012, 40(4):2225-2227.XU Ying-mei, TIAN Sheng-ni, ZHOU Jiang-li. Study on the structure and characteristics of Salix matsudana community settled at the copper tailings[J]. Anhui Agricultural Sciences, 2012, 40(4):2225-2227.
[19]  中国科学院南京土壤研究所. 土壤理化分析[M]. 上海:上海科学技术出版社, 1977.Nanjing Institute of Soil Science, Chinese Academy of Sciences. Analysis on soil physical and chemical properties[M]. Shanghai:Shanghai Science and Technology Press, 1977.
[20]  南京农学院. 土壤农化分析[M]. 北京:农业出版社, 1980.Nanjing Agricultural College. Soil agricultural chemistry analysis[M]. Beijing:Science Press, 1980.
[21]  Ye M, Li J T, Tian S N, et al. Biogeochemical studies of metallophytes from four copper-enriched sites along the Yangtze River, China[J]. Environmental Geology, 2009, 56(7):1313-1322.
[22]  Bradshaw A D, Huttl R F. Future minesite restoration involves a broader approach[J]. Ecological Engineering, 2001, 17:87-90.
[23]  Pulford D, Watson C. Phytoremediation of heavy metal-contaminated land by trees:A review[J]. Environment International, 2003, 29(4):529-540.
[24]  Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl(Brassicaceae)[J]. New Phytologist, 1994, 127:61-68.
[25]  Baker A J M, Whiting S N, Richards D. Metallophytes:A unique biodiversity and bio- technological resource ‘owned’ by the minerals industry[A]//Proceedings of the International Conference on Soil Pollution and Remediation. Nanjin, China. 2004:154-161.
[26]  刘小梅, 吴启堂, 李秉滔. 超富集植物治理重金属污染土壤研究进展[J]. 农业环境科学学报, 2003, 22(5):636-640.LIU Xiao-mei, WU Qi-tang, LI Bing-tao. Phytoremediation of heavy metal contaminated soil by hyper-accumulators:A review of researches in China and abroad[J]. Journal of Agro-Environmental Science, 2003, 22(5):636-640.
[27]  杨肖娥, 龙新宪, 倪吾钟, 等. 东南景天(Sedum alfredii H): 一种锌超富积累植物[J]. 科学通报, 2002, 47(13):1003-1006.YANG Xiao-e, LONG Xin-xian, NI Wu-zhong, et al. Sedum alfredii H:A zinc hyperaccumulators plant[J]. Chinese Science Bulletin, 2002, 47(13):1003-1006.
[28]  陈同斌, 韦朝阳, 黄泽春, 等. 砷超富集植物蜈蚣草及其对砷的富集特征[J]. 科学通报, 2002, 47(3):207-210.CHEN Tong-bin, WEI Chao-yang, HUANG Ze-chun, et al. Arsenic hyperaccumulator Pteris vittata and its accumulating characteristics of Arsenic[J]. Chinese Science Bulletin, 2002, 47(3):207-210.
[29]  刘 威, 束文圣, 蓝崇钰. 宝山堇菜(Viola baoshanensis):一种新的镉超富集植物[J]. 科学通报, 2003, 48(19):2046-2049.LIU Wei, SHU Wen-shen, LAN Chong-yu. Viola baoshanensis:A new cadmium hyperaccumulator plant[J]. Chinese Science Bulletin, 2003, 48(19):2046-2049.
[30]  束文圣, 杨开颜, 张志权, 等. 湖北铜绿山古铜矿治炼渣植被与优势植物的重金属含量研究[J]. 应用与环境生物学报, 2001, 7(1):7-12.SHU Wen-shen, YANG Kai-yan, ZHANG Zhi-quan, et al. Flora and heavy metal in dominant plants growing on an ancient copper spoil heap on Tonglushan in Hubei Province, China[J]. Chinese Journal of Applied and Environmental Biology, 2001, 7(1):7-12.
[31]  Krystyna Bojarczuk, Barbara Kieliszewska-Rokicka. Effect of ectomycorrhiza on Cu and Pb accumulation in leaves and roots of silver Birch(Betula pendula Roth. )seedlings grown in metal-contaminated soil[J]. Water Air Soil Pollut, 2010, 207(1-4):227-240.
[32]  李法云, 曲向荣, 吴龙华. 污染土壤生物修复理论基础与技术[M]. 北京:化学工业出版社, 2006.LI Fa-yun, QU Xiang-rong, WU Long-hua. Bioremediation theoretical basis and technology of polluted soils[M]. Beijing:Chemical Industry Press, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133