全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硅酸盐提高番茄抗盐性的效应与生理机制

DOI: 10.11654/jaes.2015.02.002

Keywords: 番茄 盐胁迫 硅 抗盐机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了盐胁迫下外源硅对盐敏感番茄(Solanum lycopersicum)中杂9号和耐盐番茄金鹏朝冠幼苗生长、根系特征、光合作用、渗透调节及抗氧化酶活性的影响,以探讨硅提高番茄抗盐性的生理机制.结果表明,在150 mmol·L-1 NaCl胁迫下,两个番茄品种的生物量、净光合速率、抗氧化酶(超氧化物歧化酶、过氧化氢酶和过氧化物酶)活性、可溶性蛋白含量及渗透势均显着降低,而H2O2和丙二醛含量显着升高;外源硅可显着改善盐胁迫下番茄的生长、提高光合和蒸腾作用及抗氧化酶活性、促进根系生长、降低膜脂过氧化;不同浓度硅对盐胁迫的缓解效果不同,两个品种均在硅酸盐浓度为2.0 mmol·L-1左右时缓解效果最好.硅可通过促进番茄根系的生长和水分吸收、提高叶片的光合作用及降低植株的氧化损伤来提高其抗盐性,而渗透调节与降低蒸腾失水不是本试验条件下硅诱导番茄抗盐的机理

References

[1]  Guntzer F, Keller C, Meunier J. Benefits of plant silicon for crops:A review[J]. Agronomy for Sustainable Development, 2012, 32(1):201-213.
[2]  Heine G, Tikum G, Horst W J. The effect of silicon on the infection by and spread of pythium aphanidermatum in single roots of tomato and bitter gourd[J]. Journal of Experimental Botany, 2006, 58(3):569-577.
[3]  Ming D F, Pei Z F, Naeem M S, et al. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment[J]. Journal of Agronomy and Crop Science, 2012, 198(1):14-26.
[4]  Shi Y, Wang Y, Flowers T, et al. Silicon decreases chloride transport in rice(Oryza sativa L.) in saline conditions[J]. Journal of Plant Physiology, 2013, 170(9):847-853.
[5]  Liang Y, Zhu J, Li Z, et al. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars[J]. Environmental and Experimental Botany, 2008, 64(3):286-294.
[6]  Wu J, Shi Y, Zhu Y, et al. Mechanisms of enhanced heavy metal tolerance in plants by silicon:A review[J]. Pedosphere, 2013, 23(6):815-825.
[7]  Liang Y, Sun W, Zhu Y, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:A review[J]. Environmental Pollution, 2007, 147(2):422-428.
[8]  Parida A, Das A. Salt tolerance and salinity effects on plants:A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349.
[9]  Zhu Y, Gong H. Beneficial effects of silicon on salt and drought tolerance in plants[J]. Agronomy for Sustainable Development, 2014, 34(2):455-472.
[10]  Gong H J, Randall D P, Flowers T J. Silicon deposition in the root reduces sodium uptake in rice(Oryza sativa L.) seedlings by reducing bypass flow[J]. Plant, Cell and Environment, 2006, 29(10):1970-1979.
[11]  Tuna A, Kaya C, Higgs D, et al. Silicon improves salinity tolerance in wheat plants[J]. Environmental and Experimental Botany, 2008, 62(1):10-16.
[12]  Liang Y, Zhang W, Chen Q, et al. Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley(Hordeum vulgare L.)[J]. Environmental and Experimental Botany, 2005, 53(1):29-37.
[13]  Liang Y, Zhang W, Chen Q, et al. Effect of exogenous silicon(Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley(Hordeum vulgare L.)[J]. Environmental and Experimental Botany, 2006, 57(3):212-219.
[14]  Gill S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12):909-930.
[15]  Saqib M, Z?rb C, Schubert S. Silicon-mediated improvement in the salt resistance of wheat[J]. Functional Plant Biology, 2008, 35(7):633.
[16]  Soylemezoglu G, Demir K, Inal A, et al. Effect of silicon on antioxidant and stomatal response of two grapevine(Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil[J]. Scientia Horticulturae, 2009, 123(2):240-246.
[17]  Zhu Z, Wei G, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber(Cucumis sativus L.)[J]. Plant Science, 2004, 167(3):527-533.
[18]  Ma J F, Yamaji N. Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8):392-397.
[19]  Cooke J, Leishman M. Is plant ecology more siliceous than we realise?[J]. Trends in Plant Science, 2011, 16(2):61-68.
[20]  Zhang G, Cui Y, Ding X, et al. Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(1):118-124.
[21]  Shi Y, Zhang Y, Yao H, et al. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress[J]. Plant Physiology and Biochemistry, 2014, 78:27-36.
[22]  Katz O. Beyond grasses:The potential benefits of studying silicon accumulation in non-grass species[J]. Frontiers in Plant Science, 2014, 5:376.
[23]  Al-Aghabary K, Zhu Z, Shi Q. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress[J]. Journal of Plant Nutrition, 2005, 27(12):2101-2115.
[24]  Romero-Aranda M, Jurado O, Cuartero J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status[J]. Journal of Plant Physiology, 2006, 163(8):847-855.
[25]  Yin L, Wang S, Li J, et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor[J]. Acta Physiologiae Plantarum, 2013, 35(11):3099-3107.
[26]  Gong H, Chen K. The regulatory role of silicon on water relations, photosynthetic gas exchange, and carboxylation activities of wheat leaves in field drought conditions[J]. Acta Physiologiae Plantarum, 2012, 34(4):1589-1594.
[27]  Gao X, Zou C, Wang L, et al. Silicon decreases transpiration rate and conductance from stomata of maize plants[J]. Journal of Plant Nutrition, 2006, 29(9):1637-1647.
[28]  Hattori T, Sonobe K, Araki H, et al. Silicon application by sorghum through the alleviation of stress-induced increase in hydraulic resistance[J]. Journal of Plant Nutrition, 2008, 31(8):1482-1495.
[29]  Hattori T, Sonobe K, Inanaga S, et al. Short term stomatal responses to light intensity changes and osmotic stress in s

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133