Huber H, Hohn M J, Stetter K O, et al. The phylum Nanoarchaeota, Present knowledge and future perspectives of a unique form of life [J]. Res in Mierobiol, 2003, 154(3): 165-171.
[2]
Kivelson M G, Khurana K K, Russell C T, etal. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa [J]. Science, 2000, 289: 1 340-1 343.
[3]
McCord T B, Hansen G B, Hibbitts C A. Hydrated salt minerals on Ganymede\\'s surface: evidence of an ocean below [J]. Science, 2001, 292: 1 523-1 525.
[4]
Malin M C, Edgett K S. Evidence for recent groundwater seepage and surface runoff on Mars [J]. Science, 2000, 288:2 330-2 335.
[5]
Horneck G. The microbial world and the case for Mars [J]. Planet Space Sci, 2000, 48(11): 1 053-1 063.
[6]
Onofri S, Selbmann L, Zucconi L, et al. Exploring Mars surface and its earth analogues, Antarctic microfungi as models for exobiology [J]. Planet Space Sci, 2004, 52(1-3) : 229-237.
[7]
Chapelle F H, O\\'Neill K, Bradley P M, etal. A hydrogen-based subsurface microbial community dominated by methanogens [J]. Nature, 2002, 415: 312-315.
[8]
Vreeland R H, Rosenzweig W D, Powers D W. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal [J]. Nature, 2000, 407: 897-900.
[9]
Snchez-Porro C, Martin S, Mellado E, et al. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes [J]. J Appl Microbiol, 2003, 94(2): 295.
[10]
Pennisi E. Biotechnology: In industry, extremophiles begin to make their mark [J]. Science, 1997, 276 (5 313): 705-706.
[11]
Niehaus F, Bertoldo C, Khler M, et al. Extremophiles as a source of novel enzymes for industrial application [J]. Appl Microbiol Biotechnol, 1999, 51(6): 711-729.
[12]
Li M, Peeples T L. Purification of hyperthermophilic archaeal amylolytic enzyme (MJA1) using thermoseparating aqueous two-phase systems [J]. J Chrom B, 2004, 807(1): 69-74.
[13]
Tachibana Y, Mendez L M, Fujiwara S, et al. Clo- ning and expression of the α-amylase gene from the hyperthermophilic archeon Pyrococcus sp. KOD1 and characterization of the enzyme [J]. J Ferment Bioeng,1996, 821 224-232.
[14]
Lee J T, Kanai H, Kobayashi T, et al. Cloning, nu cleotide, sequence and hyperexpression of α-amylase gene from an archaeon, Thermococcus profundus [J]. J Ferment Bioeng, 1996, 82: 432-438.
[15]
Laderman K A, Asada K, Uemori T, et al. α-Amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus: cloning and sequencing of the gene and expression in Escherichia coli [J]. J Biol Chem, 1993, 268:24 402-24 407.
[16]
Frillingos S, Linden A, Niehaus F, et al. Cloning and expression of α-amylase from the hyperthermophilie arehaeon Pyrococcus woesei in the moderately halophilic bacterium Halomonas elongate [[J]. J Appl Microbiol, 2000, 88: 495-503.
[17]
Dong G, Vieille C, Savchenko A, Zeikus J G. Cloning, sequencing and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical charaeterisation of the recombinant enzyme [J]. Appl Environ Microbiol, 1997, 63:3 569-3 576.
[18]
JΦrgensen S, Vorgias C E, Antranikian G. Cloning, sequencing and expression of an extracellular α-amylase from the hyperthermophilic archeon Pyrococcus furiosus in Escherictzia coli and Bacillus subtilis [J]. J BiolChem, 1997, 272:16 335-16 342.
[19]
Winterhalter C, Liebl W. Two extremely thermostable xylanases of the hyperthermophilie bacterium Thermotoga maritima MSB8 [J]. Appl Environ Microbiol, 1995, 61:1 810-1 815.
Di Lernia I, Morana A, Ottombrino A, et al. En zymes from Sulfolobus shibatae for the production of trehalose and glucose from starch [J]. Extremophiles, 1998, 2(4): 409-416.
[22]
De Pascale D, Sasso M P, Di Lernia I, et al. Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production [J]. Journal of Molecular Ca- talysis B: Enzymatic, 2001, 11:777-786.
[23]
Stierle D B, Stierle A A, Hobbs J D, et al. Berkeleydione and Berkeleytrione, New bioactive metabolites from an acid mine organism[J]. Organic Letters, 2004, 6(6):1 049-1 052.
[24]
Stierle A A, Stierle D B, Kemp K. Novel sesquiterpe noid Matrix Metalloproteinase-3 inhibitors from an acid mine waste extremophile [J]. J Nat Prod, 2004, 67:1 392-1 395.
[25]
Davidson B S, Schumacher R W. Isolation and synthesis of Caprolaetins A and B, new eaprolaetams from a marine bacterium [J]. Tetrahedron, 1993,49: 6 569-6 574.
[26]
Gautschi J T, Amagata T, Amagata A, et al. Expan ding the strategies in natural product studies of marine derived fungi: a chemical investigation of penicilli um obtained from deep water sediment [J]. J Nat Prod,2004,67 : 362-367.
[27]
Zhang H L, Hua H M, Pei Y H, etal. Three new cytotoxic cyclic acylpeptides from marine Bacillus sp. [J]. Chem Pharm Bull, 2004,52:1 029-1030.
[28]
Thomas D N, Dieckmann G S. Antarctic sea ice-a habitat for extremophiles [J]. Science, 2002, 295: 641-644.
[29]
Metz J G, Roessler P, Facciotti D, et al. Production of polyunsaturated fatty acids by polyketide synthases in both Prokaryotes and Eukaryotes [J]. Science, 2001, 293: 290-293.
[30]
Alva V A, Peyton B M. Phenol and catechol biodegra dation by the haloalkaliphile Halomonas campisalis, influence of pH and salinity [J]. Environ Sci Technol, 2003, 37(19): 4 397-4 402.
[31]
Ettayebi K, Errachidi F, Jamai L, et al. Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction [J]. FEMS Mierobiol Lett, 2003, 223(2): 215-927.
[32]
Park C B, Clark D S. Rupture of the cell envelope by decompression of the deep sea methanogen Methanococcus jannaschii [J]. Appl Environ Microbiol, 2002, 68:1 458-1 463.
[33]
Kajino T, Kato K, Miyazaki C, et al. Isolation of a protease-deficient mutant of Bacillus brevis and efficient secretion of a fungal protein disulfide isomerase by the mutant [J]. J Biosci Biocag, 1999, 87(1): 37-42.
[34]
Ruepp A, Graml W, Santos-Martinez, M L, et al. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum [J]. Nature, 2000, 407: 508-513.
[35]
Bao Q Y, Tian Y Q, Li W, et al. A complete sequence of the T. tengcongensis genome [J]. Genome Res, 2002, 12(5): 689-700.
[36]
Tyson G W, Chapman J, Hugenhohz P, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment [J]. Nature, 2004, 428: 37-43.
[37]
David M. Ocean science: panel to prepare plan for underwater network [J]. Science, 2004, 303: 296-297.
Podarl M, Reysenbach A L. New opportunities revealed by biotechnological explorations of extremophiles [J]. Curr Opin Biotech, 2006, 17:250-255.
[40]
Whitman W B, Coleman D C, Wiebe W J. Prokaryotes: The unseen majority [J]. Proe Natl Acad Sci, 1998, 95:6 578-6 583.
[41]
Schippers A, Neretin L N, Kallmeyer J, et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria [J]. Nature, 2005, 433: 861-864.
[42]
Thomas B J, Overmann J, Michael T, et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent [J]. Proc Natl Acad Sci, 2005, 102 (26):9 306-9 310.
[43]
Hou S B, Saw J H, Lee K S, et al. Genome sequence of the dee-sea γ-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy[J]. Proc Natl Acad Sci, 2004, 101(52): 18 036- 18 041.