Aiken G. R., McKnight D. M., Wershaw R. L., et al. Humic Substances in Soil, Sediment, and Water-Geochemistry, Isolation, and Characterization. New York: John Wiley and Sons, 1985
[2]
Ratasuk N., Nanny M. A. Characterization and quantification of reversible redox sites in humic substances. Environmental Science & Technology, 2007, 41(22): 7844-7850
[3]
Sun Y. H., Li Z. J., Guo B., et al. Arsenic mitigates cadmium toxicity in rice seedlings. Environmental and Experimental Botany, 2008, 64(3): 264-270
[4]
Cao X., Ma L. Q., Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environmental Pollution, 2004, 128(3): 317-325
[5]
谢飞, 王宏镔, 王海娟, 等. 砷胁迫对不同砷富集能力植物叶片抗氧化酶活性的影响. 农业环境科学学报, 2009, 28(7):1379-1385 Xie F., Wang H. B., Wang H. J., et al. Effect of arsenic stress on activities of antioxidant enzymes in the fronds of plants with different abilities to accumulate arsenic. Journal of Agro-Environment Science, 2009, 28(7): 1379-1385 (in Chinese)
[6]
Hughes M. F. Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 2002, 133(1): 1-16
Li C. X., Feng S. L., Shao Y., et al. Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Sciences, 2007, 19(6): 725-732
[9]
郝玉波, 刘华琳, 慈晓科, 等. 砷对玉米生长、抗氧化系统及离子分布的影响. 应用生态学报, 2010, 21(12):3183-3190 Hao Y. B., Liu H. L., Ci X. K., et al. Effects of arsenic on maize growth, antioxidant system, and ion distribution. Chinese Journal of Applied Ecology, 2010, 21(12): 3183-3190 (in Chinese)
[10]
张国祥, 杨居荣, 华珞. 土壤环境中的砷及其生态效应. 土壤, 1996, (2):64-68 Zhang G. X., Yang J. R., Hua L. Arsenic in soil environment and ecological effects. Soil, 1996, (2):64-68 (in Chinese)
[11]
Hartley W. J., Ainsworth G., Meharg A. A. Copper and arsenate induced oxidative stress in Holcus Lanatus L. clones with differential senstivity. Plant Cell Environment, 2001, 24(7): 713-722
[12]
Manju S., Smita K., Debasis C., et al. Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicology and Environmental Safety, 2009, 72(4): 1102-1110
[13]
蒋汉明, 邓天龙, 赖冬梅, 等. 砷对植物生长的影响及植物耐砷机理研究进展. 广东微量元素科学, 2009, 16(11):1-5 Jiang H. M., Deng T. L., Lai D. M., et al. Progresses on the effect of arsenic for plant and plant tolerant mechanism. Guangdong Trace Elements Science, 2009, 16(11): 1-5 (in Chinese)
[14]
Liao X. Y., Chen T. B., Xie H., et al. Soil As contamination and its risk assessment in areas near the industrial districts Southern China. Environment International, 2005, 31(6): 791-798
[15]
Liu C. P., Luo C. L., Gao Y., et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environmental Pollution, 2010, 158(3): 820-826
[16]
李永涛, 吴启堂. 土壤污染治理方法研究. 农业环境保护, 1997, 16(3):118-122 Li Y. T., Wu Q. T. Study on remedial methods for soil contamination. Agro-Environmental Protection, 1997, 16(3):118-122 (in Chinese)
[17]
孙约兵, 周启星, 郭观林. 植物修复重金属污染土壤的强化措施. 环境工程学报, 2007.1(3):103-110 Sun Y. B., Zhou Q. X., Guo G. L. Phytoremediation and strengthening measures for soil contaminated by heavy metals. Chinese Journal of Environmental Engineering, 2007, 1(3):103-110 (in Chinese)
[18]
Chen T. B., Liao X. Y., Huang Z. C., et al. Phytoremediation of As-contaminated soil in China//Willey N(Ed). Phytoremediation: Methods and Reviews. Totowa: Humana Press, 2007
[19]
韦朝阳, 陈同斌, 黄泽春, 等. 大叶井口边草——一种新发现的富集砷的植物. 生态学报, 2002, 22(5):777-778 Wei C. Y., Chen T. B., Huang Z. C., et al. Cretan brake (Pteris cretica L.): An arsenic-accumulating plant. Acta Ecologica Sinica, 2002, 22(5): 777-778 (in Chinese)
[20]
Chen H., Cutright T. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by helianthus annuus. Chemosphere, 2001, 45(1): 21-28
[21]
Noel E. P., Ray V. W. Humic acids as reducing agents: the involvement of quinoid moieties in arsenate reduction. Environmental Science and Pollution Research, 2010, 17(7): 1362-1370
[22]
闫双堆, 卜玉山, 刘利军, 等. 不同腐殖酸物质对土壤中汞的固定作用及植物吸收的影响. 环境科学学报, 2007, 27(1):101-105 Yan S. D., Bu Y. S., Liu L. J., et al. Effects of different humic acid materials on mercury fixation in soil and mercury absorption by plant. Acta Scientiae Circumstantiae, 2007, 27(1): 101-105 (in Chinese)
[23]
Soler-Rovira P., Madejón E., Madejón P., et al. In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability. Chemosphere, 2010, 79(8): 844-849
[24]
Wang D. Y., Qing C. L., Guo T. Y., et al. Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water, Air, and Soil Pollution, 1997, 95(1): 35-43
[25]
Koukal B., Guéguen C., Pardos M., et al. Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere, 2003, 53(8): 953-961
[26]
李丽, 朱琨, 张兴. 腐植物质钝化和活化土壤重金属的防污染作用. 腐植酸, 2008, (3):9-13 Li L., Zhu K., Zhang X. Effects of humic substances on preventing soil from heavy metals pollution through passivating and activating approaches. Humic Acid, 2008, (3): 9-13 (in Chinese)
[27]
中国腐植酸协会技术开发部. 腐植酸在调控与修复重金属污染土壤中的产业应用蓄势待发. 腐植酸, 2011, (2):47-50 The Technology Development Department of China Association of Humic Acid. The potential applications of humic acid in regulating and renovating heavy metal polluted soil. Humic Acid, 2011, (2): 47-50 (in Chinese)
[28]
鲍士旦. 土壤农化分析. 北京:中国农业出版社, 2005
[29]
高俊凤. 植物生理学实验指导. 北京:高等教育出版社, 2006
[30]
中科院山西煤化所. 腐植酸化学性质和结构分析. 腐植酸, 1995, (4):24-34 Institute of Shanxi Coal Chemistry, Chinese Academy of Sciences. The analytic methods of humic acid chemical property and structure. Humic Acid, 1995, (4): 24-34 (in Chinese)
肖玲, 赵允格. 石灰性土壤中有效砷提取剂的选择. 陕西环境, 1996, 3(3):18-21 Xiao L., Zhao Y. G. The extraction agent selection of effective As in calcareous soil. Shaanxi Environment, 1996, 3(3): 18-21 (in Chinese)
[34]
秦万德.腐植酸的综合利用.北京:科学出版社, 1987.36-59
[35]
Rauthan B. S., Schnitzer M. Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant and Soil, 1981, 63(3): 491-495
[36]
陈玉玲. 腐植酸对植物生理活动的影响. 植物学通报, 2000, 17(1):11-16 Chen Y. L. Influence of humic acids on physiological activities of plants. Chinese Bulletin of Botany, 2000, 17(1): 11-16 (in Chinese)
[37]
Jannin L., Arkoun M., Ourry A., et al. Microarray analysis of humic acid effects on brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil, 2012, 359(1-2): 297-319
[38]
郑平. 煤炭腐植酸的生产和应用. 北京:化学工业出版社, 1991
[39]
Moghaddam A. R. L., Soleimani A. Compensatory effects of humic acid on physiological characteristics of pistachio seedlings under salinity stress. Acta Horticulturae, 2012
[40]
田丹碧, 田定一. 黄腐酸的萃取和性质研究. 资源开发与市场, 2007, 23(10):872-873, 915 Tian D. B., Tian D. Y. Study on extraction and properties of yellow humic acid. Resource Development & Market, 2007, 23(10): 872-873, 915 (in Chinese)
[41]
Mukhopadhyay D., Sanyal S. K. Complexion and release isotherm of arsenic in arsenic-humic/fulvic acids equilibrium study. Australian Journal of Soil Research, 2004, 42(7): 815-824
[42]
Buschmann J., Kappeler A., Lindauer U., et al. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum. Environmental Science & Technology, 2006, 40(19): 6015-6020
[43]
Redman A. D., Macalady D. L., Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology, 2002, 36(13): 2889-2896
[44]
Palmer N. E., Freudenthal J. H., Wandruszka R. von, Reduction of arsenates by humic materials. Environmental Chemistry, 2006, 3(2): 131-136