全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

基于特性融合的电力负荷建模

DOI: 10.13335/j.1000-3673.pst.2015.05.028, PP. 1358-1364

Keywords: 电力系统,负荷模型,特性分析,融合,支持向量回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力负荷建模是一项重要的基础性研究,迄今为止仍是电力系统领域公认的难题。为解决此问题,提出一种新的基于特性融合的电力负荷建模方法。首先,对电力负荷的成份进行深入分析,以揭示负荷的静态特性、动态运行特性、退出特性、重启特性等基本特性。其次,将这些基本特性视为电力负荷综合特性的组成单元,利用量测信息对其进行融合以得到综合负荷模型。所提的方法兼具统计综合法与总体测辨法的优势,既能同时利用负荷的成份信息和量测信息,又能全面描述电力负荷的各种复杂特性。最后通过算例证明了所提方法的有效性。

References

[1]  鞠平.电力系统建模理论与方法[M].2版.北京:科学出版社,2010:10-22.
[2]  汤涌.电力负荷的数学模型与建模技术[M].北京:科学出版社,2012:23-45.
[3]  王立地,何昕,朴在林.通用动态负荷模型电压阶跃检测和参数辨识方法[J].电网技术,2014,38(9):2479-2483.Wang Lidi,He Xin,Piao Zailin.Voltage step point detection and parameter identification of general dynamic load model[J].Power System Technology,2014,38(9):2479-2483 (in Chinese).
[4]  邱丽萍,张文朝,汤涌,等.华北电网综合负荷建模研究[J].电网技术,2010,34(3):72-78.Qiu Liping,Zhang Wenchao,Tang Yong,et al.Study on synthesis load modeling for North China Power Grid[J].Power System Technology,2010,34(3):72-78(in Chinese).
[5]  杨少兵,吴命利,姜久春,等.电动汽车充电站负荷建模方法[J].电网技术,2013,37(5):1190-1195.Yang Shaobing,Wu Mingli,Jiang Jiuchun,et al.An approach for load modeling of electric vehicle charging station[J].Power System Technology,2013,37(5):1190-1195(in Chinese).
[6]  张磊,李欣然,陈辉华,等.统计综合法电力系统负荷建模平台的开发[J].电力系统及其自动化学报,2010,22(1):120-125.Zhang Lei,Li Xinran,Chen Huihua,et al.Development of load modeling for power system based on statistical synthesis method[J].Proceedings of the CSU-EPSA,2010,22(1):120-125(in Chinese).
[7]  贺仁睦,魏孝铭,韩民晓.电力动态负荷特性实测建模的外推和内插[J].中国电机工程学报,1996,16(3):153-154.He Renmu,Wei Xiaoming,Han Minxiao.Power system dynamic load modeling based on the measurements in the field[J].Proceedings of the CSEE,1996,16(3):153-154 (in Chinese).
[8]  张剑,孙元章.含有分布式电源的广义负荷建模[J].电网技术,2011,35(8):41-46.Zhang Jian,Sun Yuanzhang.Generalized load modeling considering wind generators connected to distribution network[J].Power System Technology,2011,35(8):41-46 (in Chinese).
[9]  Kundur P.Power system stability and control[M].America:The McGraw Hill Companies,1994:377-417.
[10]  Ma J,Han D,He R M,et al.Reducing identified parameters of measurement-based composite load model[J].IEEE Trans on Power Systems,2008,23(1):76-83.
[11]  王振树,李林川,牛丽.基于贝叶斯证据框架的支持向量机负荷建模[J].电工技术学报,2009,24(8):127-134.Wang Zhenshu,Li Lichuan,Niu Li.Load modeling based on support vector machine based on Bayesian evidence framework[J].Transactions of China Electrotechnical Society,2009,24(8):127-134(in Chinese).
[12]  郑晓雨,贺仁睦,马进.适用于低电压暂态稳定分析的负荷模型[J].电力系统自动化,2010,34(20):40-44.Zheng Xiaoyu,He Renmu,Ma Jin.A load model applicable to low voltage transient stability analysis[J].Automation of Electric Power Systems,2010,34(20):40-44(in Chinese).
[13]  徐群,刘刚,李育燕,等.单台空调负荷动态特性分析与建模[J].高电压技术,2006,32(11):127-130.Xu Qun,Liu Gang,Li Yuyan,et al.Characteristic analysis and modeling of a single air conditioner load[J].High Voltage Engineering,2006,32(11):127-130(in Chinese).
[14]  郑竞宏,朱守真,王光,等.空调负荷运行特性研究及建模[J].中国电机工程学报,2009,29(10):67-73.Zheng Jinghong,Zhu Shouzhen,Wang Guang,et al.Key characteristics and modeling of air conditioner load[J].Proceedings of the CSEE,2009,29(10):67-73(in Chinese).
[15]  郑竞宏.暂态电压稳定分析中的负荷建模法研究[D].北京:清华大学,2009.
[16]  Taylor C W.Power system voltage stability[M].USA:McGraw-Hill,Inc,1994:75.
[17]  张红斌.电力系统负荷模型结构与参数辨识的研究[D].北京:华北电力大学,2003.
[18]  陈盼,陈皓勇,叶荣,等.基于小波包和支持向量回归的风速预测[J].电网技术,2011,35(5):177-182.Chen Pan,Chen Haoyong,Ye Rong,et al.Wind speed forecasting based on combination of wavelet packet analysis with support vector regression[J].Power System Technology,2011,35(5):177-182(in Chinese).
[19]  李如琦,苏浩益,王宗耀,等.应用启发式最小二乘支持向量机的中长期电力负荷预测[J].电网技术,2011,35(11):195-199.Li Ruqi,Su Haoyi,Wang Zongyao,et al.Medium and long term load forecasting based on heuristic least square support vector machine[J].Power System Technology,2011,35(11):195-199 (in Chinese).
[20]  Fengqi S,Romero C E,Zheng Y,et al.A new approach for function approximation in boiler combustion optimization based on modified structural AOSVR[J].Expert Systems with Applications,2009,36(4):8691-8704.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133