全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2010 

基于改进免疫算法的机组组合优化

, PP. 112-117

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力系统机组组合问题是一个高维、离散、非线性的工程优化问题。提出了一种改进的免疫算法用于机组组合优化。该算法便于考虑不同类型机组启停的特性,采用抗体片段表示不同的机组组合状态,并构造了由同一机组的抗体片段集合形成的抗体片段记忆库,加快了满足抗原匹配要求的抗体的形成速度。在最优解搜索过程中,采用一种考虑亲和度的变异方法,自适应地调整搜索范围。算例表明该方法收敛性好,结果稳定,有较强的实用意义。

References

[1]  Senjyu T,Shimabukuro K,Uezato K.A fast technique for unit commitment problem by extended priority list[J].IEEE Trans on Power Systems,2003,18(2):881-888.
[2]  Wang C,Shahidehpour M.Optimal generation scheduling with romping costs[J].IEEE Trans on Power Systems,1995,10(1): 60-67.
[3]  Ongsakul W,Petcharaks N.Unit commitment by enhanced adaptive Lagrangian relaxation[J].IEEE Trans on Power Systems,2004,19(1):620-628.
[4]  Mantawy A H,Abdel Magid Y L,Selim S Z.Unit commitment by Tabu search[J].IEE Proceedings Generation,Transmission and Distribution,1998,145(1):56-64.
[5]  Simopoulos D N,Kavatza S D,Vournas C D.Unit commitment by an enhanced simulated annealing algorithm[J].IEEE Trans on Power Systems,2006,21(1):68-76.
[6]  Simon S P,Padhy N P,Anand R S.An ant colony system approach for unit commitment problem[J].IEEE Trans on Power Systems,2006,28(5):315-323.
[7]  高山,单渊达.遗传算法搜索优化及其在机组组合中的应用[J].中国电机工程学报,2001,21(3):45-48.
[8]  Gao Shan,Shan Yuanda.Advanced genetic algorithm approach to unit commitment with searching optimization[J].Proceedings of the CSEE,2001,21(3):45-48(in Chinese).
[9]  Ting T O,Rao M V C,Loo C K.A novel approach for unit commitment problem via an effective hybrid particle swarm optimization[J].IEEE Trans on Power Systems,2006,21(1):411-418.
[10]  Bavafa M,Monsef H,Navidi N.A new hybrid approach for unit commitment using Lagrangian relaxation combined with evolutionary and quadratic programming[C].Power and Energy Engineering Conference,Wuhan,2009.
[11]  高宗和,耿建,张显,等.大规模系统月度机组组合和安全校核算法[J].电力系统自动化,2008,32(23):28-30.
[12]  Gao Zonghe,Geng Jian,Zhang Xian,et al.Monthly unit commitment and security assessment algorithm for large-scale power system[J].Automation of Electric Power Systems,2008,32(23):28-30(in Chinese).
[13]  李蔚,刘长东,盛德仁,等.基于免疫算法的机组负荷分配研究[J].中国电机工程学报,2004,24(7):241-245.
[14]  Li Wei,Liu Changdong,Sheng Deren,et al.Research on optimization of unit commitment based on IA[J].Proceeding of the CSEE,2004,24(7):241-245(in Chinese).
[15]  郭创新,朱承治,赵波,等.基于改进免疫算法的电力系统无功优化[J].电力系统自动化,2005,29(15):23-29.
[16]  Guo Chuangxin,Zhu Chengzhi,Zhao Bo,et al.Power system reactive power optimization based on an improved immune algorithm[J].Automation of Electric Power Systems,2005,29(15):23-29(in Chinese).
[17]  孙勇智,韦巍.基于人工免疫算法的电力系统最优潮流计算[J].电力系统自动化,2002,26(12):30-34.
[18]  Sun Yongzhi,Wei Wei.Solution of optimal power flow problem based on artificial immune algorithm[J].Automation of Electric Power Systems,2002,26(12):30-34(in Chinese).
[19]  高洁.应用免疫算法进行电网规划研究[J].系统工程理论与实践,2001,21(5):119-123.
[20]  Gao Jie.The application of the immune algorithm for power network planning[J].Systems Engineering-Theory and Practice,2001,21(5):119-123(in Chinese).
[21]  Ongsakul W,Petcharaks N.Transmission and ramp constrained unit commitment using enhanced adaptive Lagrangian relaxation[C].IEEE Power Tech,Russia,Petersburg,2005.
[22]  De Castro L N,Von Zuben F J.Learning and optimization using the clonal selection principle[J].IEEE Trans on Evolutionary Computation,2002,6(3):239-251.
[23]  葛红.免疫算法与遗传算法比较[J].暨南大学学报:自然科学版,2003,24(1):22-25.
[24]  Ge Hong.Comparison of immune algorithm with genetic algorithm [J].Journal of Jinan University:Natural Science,2003,24(1):22-25(in Chinese).
[25]  Lu H.On the convergence rates of clonal selection algorithm[C].International Symposium on Information Science and Engieering (ISISE '08),Shanghai,2008.
[26]  韩学山,柳焯.考虑发电机组输出功率速度限制的最优机组组合[J].电网技术,1994,18(6):11-16.
[27]  Han Xueshan,Liu Zhuo.Optimal unit commitment consider unit’s ramp rate limits[J].Power System Technology,1994,18(6):11-16(in Chinese).
[28]  陈烨,赵国波,刘俊勇,等.用于机组组合优化的蚁群粒子群混合算法[J].电网技术,2008,32(6):52-56.
[29]  Chen Ye,Zhao Guobo,Liu Junyong,et al.An ant colony optimization and particle swarm optimization hybrid algorithm for unit commitment based on operate coding[J].Power System Technology,2008,32(6):52-56(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133