全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

大规模风电参与系统频率调整的技术展望

DOI: 10.13335/j.1000-3673.pst.2014.03.015, PP. 638-646

Keywords: 大规模风电,频率调整,控制策略,调频能力,储能系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

要求风电主动参与系统频率调整是风电大规模并网后电力系统为保证其自身安全做出的必然选择。世界多个国家的风电并网导则对此提出了明确要求。然而,传统的风电机组一般都没有提供频率调整功能,风电如何参与调频是目前的研究热点。从风电参与系统调频的控制策略和能力评估两个方面对相关研究进展进行了综述。控制方面,对比研究了模拟惯量控制、下垂控制、转子转速控制、桨距角控制以及协调控制等不同控制策略。调频能力方面,分析了单台及多台风电机组的调频能力,归纳了风电区域互补性对调频能力的影响。并展望了需进一步重点研究的内容风电场内部机组间及风电场与常规系统间的协调控制、风电场与储能等新技术的协调控制、风电场参与调频的能力评估与经济性分析。

References

[1]  EON Netz GmbH.Grid code - high and extra high voltage[DB/EB].2006-06-12.http://www.nerc.com/docs/pc/ivgtf/German_EON_Grid_Code.pdf.
[2]  Hydro-Québec TransÉnergie.Technical requirements for the connection of generation facilities to the Hydro-Quebec transmission system:supply requirements for wind generation[DB/EB].2003-04-05.http://www.hydroquebec.com/transenergie/fr/commerce/pdf/exigence_raccordement_fev_09_en.pdf.
[3]  Nordel.Nordic grid code 2007 (Nordic collection of rules)[DB/EB].2004.http://webhotel2.tut.fi/units/set/research/adine/materiaalit/Active%20network/System%20integration/Grid%20codes/Nordel%20grid%20code%202007-00129-01-E.pdf.
[4]  Eskom System Operations and Planning Division.Grid code requirements for wind energy facilities connected to distribution or transmission system in south Africa (version 4.4)[DB/EB].2012-07.http://www.nersa.org.za/Admin/Document/Editor/file/Electricity/TechnicalStandards/RSA%20Grid%20Code%20Connection%20Requirements%20for%20Wind%20Energy%20Facilitie.pdf.
[5]  National Grid (Great Britain).Grid code documents:connection conditions [DB/EB].2009-07.http://www.nationalgrid.com/uk/Electricity/Codes/gridcode/gridcodedocs/.
[6]  GB/T 19963—2011 风电场接入电力系统技术规定[S].北京:中国标准出版社.
[7]  Mullane A, O'Malley M.The inertial response of induction machine based wind turbines[J].IEEE Transactions on Power Systems, 2005, 20(3):1496-1503.
[8]  Sun Y Z, Zhang Z S, Li G J, et al.Review on frequency control of power systems with wind power penetration[C]//2010 International Conference on Power System Technology.Hangzhou, China:China Electric Power Research Institute, 2010:1-8.
[9]  Janaka E, Nick J.Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J].IEEE Transactions on Energy Convention, 2004, 19(4):800-802.
[10]  Gonzalez-Longatt F M.Effects of the synthetic inertia from wind power on the total system inertia:simulation study[C]//2012 2nd International Symposium on Environment Friendly Energies and Applications.Newcastle, UK:Northumbria University, 2012:389-395.
[11]  Lalor G, Mullane A, O’Malley M.Frequency control and wind turbine technologies[J].IEEE Transactions on Power Systems, 2005, 20(4):1905-1913.
[12]  Morren J, de Haan W H, Kling Wil L, et al.Wind turbines emulating inertia and supporting primary frequency control[J].IEEE Transactions on Power Systems, 2006, 21(1):433-434.
[13]  Ramtharan G, Ekanayake J, Jenkins N.Frequency support from doubly fed induction generator wind turbines[J].IET Transactions on Renewable Power Generation, 2007, 1(1):3-9.
[14]  杜威, 姜齐荣, 陈蛟瑞.微电网电源的虚拟惯性频率控制策略[J].电力系统自动化, 2011, 35(23):26-31.Du Wei, Jiang Qirong, Chen Jiaorui. Frequency control strategy of distributed generations based on virtual inertia in a microgrid[J].Automation of Electric Power Systems, 2011, 35(23):26-31(in Chinese).
[15]  Vidyanandan K V, Nilanjan S.Primary frequency regulation by deloaded wind turbines using variable droop[J].IEEE Transactions on Power Systems, 2013, 28(2):837-846.
[16]  Gowaid I A, El-Zawawi A, El-Gammal M.Improved inertia and frequency support from grid-connected DFIG wind farms[C]//2011 IEEE PES Power Systems Conference and Exposition (PSCE).Phoenix, USA:IEEE PES Society, 2011:1-9.
[17]  De Almeida R G, Castronuovo E D, Peas Lopes J A.Optimum generation control in wind parks when carrying out system operator requests[J].IEEE Transactions on Power Systems, 2006, 21(2):718-725.
[18]  Erlich I, Wilch M, Primary frequency control by wind turbines[C]//2010 IEEE Power and Energy Society General Meeting.Minnesota, USA:IEEE Power & Energy Society, 2010:1-8.
[19]  Ullah N R, Thiringer T, Karlsson D, et al.Temporary primary frequency control support by variable speed wind turbines-Potential and applications[J].IEEE Transactions on Power Systems, 2008, 23(2):601-612.
[20]  Zhang Z S, Sun Y Z, Lin J, et al.Coordinated frequency regulation by doubly fed induction generator based wind power plants[J].IET Transactions on Renewable Power Generation, 2012, 6(1):38-47.
[21]  Mauricio J M, Marano A, Gómez-Expósito A, et al.Frequency regulation contribution through variable speed wind energy conversion systems[J].IEEE Transactions on Power Systems, 2009, 24(1):173-180.
[22]  Chang-Chien L R, Yin Y C.Strategies for operating wind power in a similar manner of conventional power plant[J].IEEE Transactions on Power Systems, 2009, 24(4):926-933.
[23]  James F C, Rick W.Frequency response capability of full converter wind turbine generators in comparison to conventional generation[J].IEEE Transactions on Power Systems, 2006, 23(2):649-656.
[24]  Ping K K, Pei L, Hadi B, et al.Kinetic energy of wind-turbine generators for system frequency support [J].IEEE Transactions on Power Systems, 2009, 24(1):279-287.
[25]  Hansen A D, Sorensen P, Iov F, et al.Centralized power control of wind farm with doubly fed induction generators[J].Renewable Energy, 2006, 31(7):935-951.
[26]  沈臣, 顾伟, 吴志.孤岛模式下的微电网低频减载策略分析[J].电力系统自动化, 2011, 35(9):47-52.Shen Chen, Gu Wei, Wu Zhi.An under frequency load shedding strategy for islanded microgrid[J].Automation of Electric Power Systems, 2011, 35(9):47-52 (in Chinese).
[27]  Miao Z X, Fan L L, Osborn D, et al.Wind farms with HVDC delivery in inertial response and primary frequency control[J].IEEE Transactions on Energy Conversion, 2010, 4(25):1171-1178.
[28]  Hurtado S, Gostales G, de Lara A, et al.A new power stabilization control system based on making use of mechanical inertia of a variable speed wind turbine for stand-alone wind diesel applications[C]//IEEE 2002 28th Annual Conference of the Industrial Electronics Society.Sevilla, Spain:IEEE Industrial Electronics Society, 2002:3326-3331.
[29]  李和明, 张祥宇, 王毅, 等.基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J].中国电机工程学报, 2012, 32(7):32-39.Li Heming, Zhang Xiangyu, Wang Yi, et al.Virtual inertia control of DFIG-based wind turbine based on the optimal power tracking [J].Proceeding of CSEE, 2012, 32(7):32-39 (in Chinese).
[30]  Tarnowski G C, Kjar P C, Sorensen P E, et al.Variable speed wind turbines capability for temporary over production[C]//IEEE Power & Energy Society General Meeting.Alberta, Canada:IEEE Power & Energy Society, 2009:1-7.
[31]  何仰赞, 温增银.电力系统分析(下册)[M].武汉:华中科技大学出版社, 2006:111-116.
[32]  林俐, 李晓钰, 王世谦, 等.基于分段控制的双馈风电机组有功频率控制[J].中国电力, 2012, 45(2):49-53.Lin Li, Li Xiaoyu, Wang Shiqian, et al.An active power-frequency control stategy of a DFIG based on subsection control[J].Electric Power, 2012, 45(2):49-53 (in Chinese).
[33]  Margari I D, Papathanassiou S A, Hatziargyriou N D, et al.Frequency control in autonomous power systems with high wind power penetration[J].IEEE Transactions on Sustainable Energy, 2012, 3(2):189-199.
[34]  李立成, 叶林.变风速下永磁直驱风电机组频率-转速协调控制策略[J].电力系统自动化, 2011, 35(17):27-31.Li Licheng, Ye Lin.Coordinated control of frequency and rotational speed for direct drive permanent magnet synchronous generator wind turbine at variable wind speeds[J].Automation of Electric Power Systems, 2011, 35(17):27-31 (in Chinese).
[35]  Kayikci M, Milanovic J V.Dynamic contribution of DFIG-based wind plants to system frequency disturbance [J].IEEE Transactions on Power Systems, 2009, 24(2):859-867.
[36]  Teninge A, Jecu C, Roye D, et al.Contribution to frequency control through wind turbine inertial energy storage[J].IET Transactions on Renewable Power Generation, 2009, 3(3):358-370.
[37]  De Almeida R G, Peas Lopes J A.Participation of doubly fed induction wind generators in system frequency regulation[J].IEEE Transactions on Power Systems, 2007, 22(3):944-950.
[38]  Holdsworth L, Ekanayake J, Jenkins N.Power system frequency response from fixed speed and doubly fed induction generator based wind turbines[J].Wind Energy, 2004, 47(1):21-35.
[39]  Zertek A, Verbic G, Pantos M.Participation of DFIG wind turbines in frequency control ancillary service by optimized rotational kinetic energy[C]//2010 7th International Conference on the European Energy Market (EEM).Madrid, Spain:IEEE Power & Energy Society, 2010:1-6.
[40]  Mostafa E M, Vincent C, Christophe S, et al.Fuzzy logic Supervisor-Based primary frequency control experiments of a variable-speed wind generator[J].IEEE Transactions on Power Systems, 2009, 24(1):407-417.
[41]  曹军, 王虹富, 邱家驹.变速恒频双馈风电机组频率控制策略[J].电力系统自动化, 2009, 33(13):78-82.Cao Jun, Wang Hongfu, Qiu Jiaju.Frequency control strategy of variable speed constant frequency doubly fed induction generator wind turbines[J].Automation of Electric Power Systems, 2009, 33(13):78-82(in Chinese).
[42]  Thatte A A, Zhang F, Xie L.Coordination of wind farms and flywheels for energy balancing and frequency regulation[C]//2011 IEEE Power & Energy Society General Meeting.Detroit, USA:IEEE Power & Energy Society, 2011:1-7.
[43]  Gauthier D, Bruno F, Gilles M.Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia[J].IEEE Transactions on Sustainable Energy, 2012, 4(6):931-939.
[44]  Haileselassie T M, Torres-Olguin R E, Vrana T K, et al.Main grid frequency support strategy for VSC-HVDC connected wind farms with variable speed wind turbines[C]//2011 IEEE Trondheim Power Technology.Trondheim, Norway:IEEE Power & Energy Society, 2011:1-6.
[45]  Phulpin Y.Communication-free inertia and frequency control for wind generators connected by an HVDC-link[J].IEEE Transactions on Power Systems, 2012, 27(2):1136-1137.
[46]  Doherty R, Mullane A, Nolan G, et al.An assessment of the impact of wind generation on system frequency control[J].IEEE Transactions on Power Systems, 2010, 25(1):452-460.
[47]  Kundur P.Power system stability and control[M].New York:McGraw-Hill Professional, 1994:128-136.
[48]  Knudsen H, Nielsen J N.Wind power in power systems- introduction to the modeling of wind turbines[M].United Kingdom:Wiley, 2005:525-585.
[49]  Rawn B G, Gibescu M, Kling W L.A static analysis method to determine the availability of kinetic energy from wind turbines[C]//2010 IEEE Power & Energy Society General Meeting.Minneapolis, USA:IEEE Power & Energy Society, 2010:1-8.
[50]  Rawn B G, Gibescu M, Kling W L.Kinetic energy from distributed wind farms:technical potential and implications[C]//2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe).Gothenburg, Sweden:IEEE Power & Energy Society, 2010:1-8.
[51]  姬联涛, 张建成.基于飞轮储能技术的可再生能源发电系统广义动量补偿控制研究[J].中国电机工程学报, 2010, 30(24):101-106.Ji Liantao, Zhang Jiancheng.Research on generalized momentum compensation method of flywheel energy storage in renewable energy power system[J].Proceeding of CSEE, 2010, 30(24):101-106(in Chinese).
[52]  柳伟, 顾伟, 孙蓉, 等.DFIG-SMES互补系统一次调频控制[J].电工技术学报, 2012, 27(9):108-116.Liu Wei, Gu Wei, Sun Rong, et al.Primary frequency control of doubly fed induction generator super conducting magnetic energy storage complementary system[J].Transactions of China Electro- technical Society, 2012, 27(9):108-116(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133