全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2006 

基于主成分分析和最小二乘支持向量机的电力系统状态估计

, PP. 75-77

Keywords: 主成分分析,最小二乘支持向量机,状态估计,电力系统,核函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

电力系统状态估计在能量管理系统中起着非常重要的作用,作者提出了基于主成分分析和最小二乘支持向量机的状态估计方法。首先对由量测量组成的初始样本进行主成分分析,对初始样本进行数据压缩和特征提取,消除数据间的相关性,提取出包含初始样本足够信息的主成分,然后将提取出的主成分作为最小二乘支持向量机的输入,降低了样本空间的维数。算例结果表明了所提出方法能有效地提高电力系统状态估计的精度。

References

[1]  于尔铿.电力系统状态估计[M].北京:水利电力出版社,1985.
[2]  李碧君,薛禹胜,韩祯祥,等.基于权函数的电力系统状态估计算[J]. 电力系统自动化,1999,23(8):32-49.
[3]  Li Bijun,Xue Yusheng,Han Zhenxiang et al.Weight function based on power system state estimation algorithm[J].Automation of Electric Power Systems,1999,23(8):32-49(in Chinese).
[4]  孙宏斌,高峰,张伯明,等.电力系统最小信息损失状态估计的信息学原理[J].中国电机工程学报,2005,25(6):11-16.
[5]  Sun Hongbin,Gao Feng,Zhang Boming et al.Information principle for state estimation in power system based on minimum information loss[J].Proceedings of the CSEE,2005,25(6):11-16(in Chinese).
[6]  杜正春, 牛振勇, 方万良.基于分块 QR 分解的一种状态估计算[J].中国电机工程学报,2003,23(8):50-55.
[7]  Du Zhengchun,Niu Zhenyong,Fang Wanliang.A block QR based power system state estimation algorithm[J].Proceedings of the CSEE,2003,23(8):50-55(in Chinese).
[8]  韩富春,王娟娟.基于神经网络的电力系统状态估计[J].电力系统自动化学报,2002,14(6):49-51.
[9]  Han Fuchun,Wang Juanjuan.State estimation in power system based on neural network[J].Proceedings of the EPSA,2002,14(6):49-51(in Chinese).
[10]  祝滨,刘耀年,祝洪博.神经网络的同伦算法与电力系统状态估计[J].电力系统自动化学报,2000,12(1),11-14.
[11]  Zhu Bin,Liu Yaonian,Zhu Hongbo.Homotopy method of neural network and power system state estimation[J].Proceedings of the EPSA,2000,12(1):11-14(in Chinese).
[12]  Vapnik V.Estimation of dependencies based on empirical data [Z].Berlin: Springer-Verlag,1982.
[13]  张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26 (1):32-42.
[14]  Zhang Xuegong.Introduction to statistical learning theory and support vector machines[J].Acta Automation Sinica,2000,26(1):32-42(in Chinese).
[15]  Suykens J A K.Nonlinear modeling and support vector machines [C].IEEE Instrumentation and Measurement Technology Conference.Budapest,2001:191.
[16]  Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Process Lett,1999,9(3):293.
[17]  张庆宝, 程浩忠, 刘青山,等. 基于粗糙集属性约简算法和支持向量机的短期负荷预测[J].电网技术,2006,30(8):56-59.
[18]  Zhang Qingbao,Cheng Haozhong,Liu Qingshan et al.Short-term load forecasting based on attribute reduction algorithm of rough set and support vector machines[J].Power System Technology,2006,30(8):56-59(in Chinese).
[19]  Scholkopf B,Burges C,Smola A J,et al.Advances in kernel methods-support vector learning[M].Cambridge,MA:MIT press,1998.
[20]  Burges C J C.A tutorial on support vector machines for patterdsn
[21]  recognition [J].Data mining and knowledge discovery,1998,2(2):1-47.
[22]  杨延西,刘丁.基于小波变换和最小二乘支持向量机的短期电力负荷预测[J].电网技术,2005,29(13):60-64.
[23]  Yang Yanxi,Liu Ding.Short-term load forecasting based on wavelet transform and least square support vector machines[J].Power System Technology,2005,29(13):60-64(in Chinese).
[24]  赵杰辉,葛少云,刘自发.基于主成分分析的径向基函数神经网络在电力系统负荷预测中的应用[J].电网技术,2004,28(5):35-40.
[25]  Zhao Jiehui,Ge Shaoyun,Liu Zifa.Application of radial basic function network based on principal component analysis in load forecasting[J].Power System Technology,2004,28(5):35-40(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133