全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2006 

一种基于多神经网络的组合负荷预测模型

, PP. 21-25

Keywords: 组合负荷预测,BP神经网络,RBF神经网络,小波神经网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对BP神经网络、RBF神经网络和小波神经网络应用于负荷预测时所遇到的问题,提出了一种基于各种神经网络的组合预测模型。该模型为单输出的3层神经网络,即将3种神经网络的预测结果作为神经网络的输入,将实际负荷值作为神经网络的输出,使训练后的网络具有预测能力。该模型能降低单个神经网络的预测风险,提高预测精度。仿真结果表明,所提出的组合预测模型的精度高于其中任一单一网络模型,也高于传统的线性组合预测模型。

References

[1]  牛东晓,曹树华,赵磊,等.电力负荷预测技术及其应用[M].北京:中国电力出版社,1998.
[2]  周佃民,管晓宏,孙婕,等.基于神经网络的电力系统短期负荷预测研究[J].电网技术,2002,26(2):10-13.
[3]  Zhou Dianmin,Guan Xiaohong,Sun Jie,et al.A short-term load forecasting system based on BP artificial neural network[J].Power System Technology,2002,26(2):10-13(in Chinese).
[4]  马文晓,白晓民,沐连顺.基于人工神经网络和模糊推理的短期负荷预测方法[J]. 电网技术,2002,26(3):49-51.
[5]  Ma Wenxiao,Bai Xiaomin,Mu Lianshun.Short term load forecasting using artificial neural network and fuzzy inference [J].Power System Technology,2002,26(3):49-51(in Chinese).
[6]  姜勇. 基于模糊聚类的神经网络短期负荷预测方法[J].电网技术,2003,27(2):45-49.
[7]  Jiang Yong.Short-term load forecasting using a neural network based on fuzzy clustering[J].Power System Technology,2003,27(2):45-49(in Chinese).
[8]  Ranaweera D K,Hubele N F,Papalexopoulos A D.Application of radial basis function neural network model for short-term load forecasting[J].IEE Proceedings-Generation,Transmission and Distribution,1995,142(1):45-50.
[9]  金海峰,熊信艮,吴耀武.基于级联神经网络的短期负荷预测方法[J],电网技术,2002,26(3):49-51.
[10]  Jin Haifeng,Xiong Xinyin,Wu Yaowu.A short-term load forecasting method based on cascade neural network[J].Power System Technology,2002,26(3):49-51(in Chinese).
[11]  Cao Liangyue,Hong Yiguang,Fang Haiping,et al.Predicting chaotic time series with wavelet networks[J].Physica D,1995,85:225-238.
[12]  张步涵,赵剑剑,刘小华,等.一种基于小波神经元网络的短期负荷预测方法[J].电网技术,2004,28(7):15-18.
[13]  Zhang Buhan,Zhao Jianjian,Liu Xiaohua,et al.Short-term load forecasting based on wavelet neural network[J].Power System Technology,2004,28(7):15-18(in Chinese).
[14]  徐军华,刘天琪.基于小波分解和人工神经网络的短期负荷预测[J].电网技术,2004,28(8):30-33.
[15]  Xu Junhua,Liu Tianqi.An approach to short-term load forecasting based on wavelet transform and artificial neural network[J].Power System Technology,2004,28(8):30-33(in Chinese).
[16]  牛东晓,邢棉,谢宏,等.短期电力负荷预测的小波神经元网络模型的研究[J].电网技术,1999,23(4):21-24.
[17]  Niu Dongxiao,Xing Mian,Xie Hong,et al.Wavelet neural network model for short-term load forecasting[J].Power System Technology,1999,23(4):21-24(in Chinese).
[18]  邰能灵,侯志俭.小波模糊神经网络在电力系统短期负荷预测中的应用[J].中国电机工程学报,2004,24(1):24-29.
[19]  Tai Nengling,Hou Zhijian.New short-term load forecasting principle with the wavelet transform fuzzy neural network for the power systems[J].Proceedings of the CSEE,2004,24(1):24-29(in Chinese).
[20]  Hornik K M S,White H.Universal approximation of an unknown mapping and its deriva-fives using multilayer feedforward networks [J].Neural Networks,1990,3:551-560.
[21]  Bates J M,Granger C W J.The combination of forecasts[J].
[22]  Operational Research Quarterly,1969,20:451-468.
[23]  谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究[J].中国电机工程学报,2002,22(7):85-89.
[24]  Xie Kaigui,Li Chunyan,Zhou Jiaqi.Research of the combination forecasting model for load based on artificial neural network [J].Proceedings of the CSEE,2002,22(7):85-89(in Chinese).
[25]  李林川,吕冬,武文杰.一种简化的电力系统负荷线性组合预测法[J].电网技术,2002,26(10):10-13.
[26]  Li Linchuan,Lü Dong,Wu Wenjie.A linear combination based simplified load forecasting method for power system[J].Power System Technology,2002,26(10):10-13(in Chinese).
[27]  雷鸣,吴雅,杨叔子.非线性时间序列建模与预测的神经网络[J].华中理工大学学报,1993,21(1):47-52.
[28]  Lei Ming,Wu Ya,Yang Shuzi. Non-linear time series modeling and forecasting using the neural network approach[J].Journal of Huazhong University of Science & Technology,1993,21(1):47-52(in Chinese).
[29]  梁海峰,涂光瑜,唐红卫.遗传神经网络在电力系统短期负荷预测中的应用[J].电网技术,2001,25(1):49-53.
[30]  Liang Haifeng,Tu Guangyu,Tang Hongwei.Application of genetic algorithm neural network for short term load forecasting of power system[J].Power System Technology,2001,25(1):49-53(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133