全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2010 

上海电网需求侧负荷模式的组合识别模型

, PP. 145-151

Keywords: 上海电网,自组织映射网络,负荷模式,负荷特性,组合识别模型,数据挖掘

Full-Text   Cite this paper   Add to My Lib

Abstract:

区别于传统按行业分类的需求侧负荷分析方法,利用自组织映射神经网络、K-means、模糊C均值、ID3决策树等数学工具构建了基于聚类、分类技术与决策树结构分析的负荷模式组合识别模型,并对上海电网需求侧负荷进行了特征指标计算、类别判断与挖掘、聚类评判、分类知识解释等综合分析。根据上海电网14个行业357个用户的日负荷数据集进行算例分析,指出了上海电网需求侧负荷类型、行业分布、关键指标等模式特点,验证了该模型的正确性、有效性与工程适用性。

References

[1]  贾慧敏,何光宇,方朝雄,等.用于负荷预测的层次聚类和双向夹逼结合的多层次聚类法[J].电网技术,2007,31(23):33-36. Jia Huimin,He Guangyu,Fang Chaoxiong,et al.Load forecasting by multi-hierarchy clustering combining hierarchy clustering with approaching algorithm in two directions[J].Power System Technology,2007,31(23):33-36(in Chinese).
[2]  冯丽,邱家驹.基于电力负荷模式分类的短期电力负荷预测[J].电网技术,2009,33(4):23-26. Feng Li,Qiu Jiaju.Electrical load forecasting based on load patterns [J].Power System Technology,2009,33(4):23-26(in Chinese).
[3]  Carpaneto E,Chicco G.Probabilistic characterisation of the aggregated residential load patterns[J].IET Proceedings of Generation, Transmission & Distribution,2008,2(3):373-382.
[4]  Jeffrey B.Load profiling for retail choice: examining a complex and crucial component of settlement[J].The Electricity Journal,2000,13(10):69-74.
[5]  Kohonen T.Self-organized formation of topologically correct feature maps[J].Biological Cybernetics,1982,43(1):59-69.
[6]  Quinlan J R.Introduction of decision trees [J].Machine Learning,1986(1):84-100.
[7]  Daniel S K.Demand-side view of electricity market[J].IEEE Trans on Power Systems,2003,18(2):520-527.
[8]  Pitt B,Kirchen D.Application of data mining techniques to load profiling[C].IEEE PICA,Santa Clare,CA,1999.
[9]  候汝锋,蔡泽祥,尹亮,等.基于最大负荷预测的地区电网静态安全分析[J].电网技术,2004,28(23):38-42. Hou Rufeng,Cai Zexiang,Yin Liang,et al.Security analysis of district power network based on the maximal load forecasting [J].Power System Technology,2004,28(23):38-42(in Chinese).
[10]  Chicco G,Napoli R,Postulache P,et al.Customer characterization options for improving the tariff offer[J].IEEE Trans on Power Systems,2003,18(1):381-387.
[11]  Chen C S,Hwang J C,Huang C W.Application of load survey to proper tariff design[J].IEEE Trans on Power Systems,1997,12(4):1746-1751.
[12]  黄永皓,康重庆,夏清,等.用户分类电价决策方法的研究[J].中国电力,2004,37(1):24-28. Huang Yonghao,Kang Chongqing,Xia Qing,et al.Study on consumer classification differentiated pricing of electricity[J].Electric Power,2004,37(1):24-28(in Chinese).
[13]  李培强,李欣然,陈辉华,等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78. Li Peiqiang,Li Xinran,Chen Huihua,et al.The characteristics classification and synthesis of power load based on fuzzy cluster[J].Proceedings of the CSEE,2005,25(24):73-78(in Chinese).
[14]  张智晟,孙雅明,张世英,等.基于数据挖掘多层次细节分解的负荷序列聚类分析[J].电网技术,2006,30(2):51-56. Zhang Zhisheng,Sun Yaming,Zhang Shiying,et al.Clustering analysis of electric load series using clustering algorithm of multi- hierarchy and detailed decomposition based on data mining[J].Power System Technology,2006,30(2):51-56(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133