全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2012 

电力系统仿真不确定度评估中拟合多项式阶次的确定

, PP. 125-130

Keywords: 概率分配法,不确定性评估,电力系统,动态仿真

Full-Text   Cite this paper   Add to My Lib

Abstract:

当前用概率分配法(probabilisticcollocationmethod,PCM)进行含多个不确定参数的仿真不确定性评估时,各参数都使用相同的阶次,致使拟合多项式总阶次过高,所需仿真次数过多,限制了PCM的应用。实际上,各参数所需的阶次可以不同,需要分别定阶。如果将参数耦合在一块进行定阶,这是一个组合问题,难以求解。为此,假定参数的阶次不受其他参数取值的影响,对各参数进行解耦定阶,然后将所得阶次应用到多参数PCM对应的参数中。此外,利用PCM能用一个低阶多项式来精确获取高阶多项式的期望值的特点,当不确定参数较多、精确的高阶多项式无法获得时,提出根据期望值在连续2个阶次拟合多项式中的差异来对参数进行定阶,在保证期望值等价的前提下,大大降低拟合多项式的总阶次和所需仿真次数。理论分析和算例结果验证了该方法的有效性。

References

[1]  薛禹胜,刘强,Dong Zhaoyang,等.关于暂态稳定不确定性分析的评述[J].电力系统自动化,2007,31(14):1-7.Xue Yusheng,Liu Qiang,Dong Zhaoyang,et al.A review of non-deterministic analysis for power system transient stability [J].Automation of Electric Power Systems,2007,31(14):1-7(in Chinese).
[2]  Hiskens I A,Lesieutre B C,Roy S.Uncertainty evaluation and mitigation in electrical power systems[C]//Proceedings of XI Symposium of Specialists in Electrical Operational and Expansion Planning.Belem,Brazil:Proceedings of XI Symposium of Specialists in Electrical Operational and Expansion Planning,2009:1-11.
[3]  贺仁睦.电力系统动态仿真准确度的探究[J].电网技术,2000,24(12):1-4.He Renmu.Research into veracity of power system dynamic simulation[J].Power System Technology,2000,24(12):1-4(in Chinese).
[4]  孙华东,周孝信,李若梅.感应电动机负荷参数对电力系统暂态电压稳定性的影响[J].电网技术,2005,29(23):1-6.Sun Huadong,Zhou Xiaoxin,Li Ruomei.Influence of induction motor load parameters on power system transient voltage stability [J].Power System Technology,2005,29(23):1-6(in Chinese).
[5]  Wan Y,Roy S,Lesieutre B C.Uncertainty evaluation through mapping identification in intensive dynamic simulations[J].IEEE Transaction on Systems,Man and Cybernetics,Part A:Systems and Humans,2010,40(5):1094-1104.
[6]  陈建华,吴文传,张伯明,等.电力系统动态仿真中模型参数不确定性的定量分析[J].电网技术,2010,34(11):18-23.Chen Jianhua,Wu Wenchuan,Zhang Boming,et al.Quantitative evaluation of parameter uncertainty in power system dynamic simulation[J].Power System Technology,2010,34(11):18-23(in Chinese).
[7]  Kunder P.Power system stability and control[M].New York,USA:Mc Graw-Hill,1994:813-814.
[8]  赵渊,沈智健,周念成,等.大电网可靠性蒙特卡洛仿真的概率不确定性分析[J].中国电机工程学报,2008,28(28):61-67.Zhao Yuan,Shen Zhijian,Zhou Niancheng,et al.Probabilistic uncertainty analysis of Monte-Carlo simulation for bulk power system reliability evaluation[J].Proceedings of the CSEE,2008,28(28):61-67(in Chinese).
[9]  Hiskens I A,Pai M A.Trajectory sensitivity analysis of hybrid systems[J].IEEE Transactions on Circuits and Systems,2000,47(2):204-220.
[10]  Hiskens I A,Alseddiqui J.Sensitivity,4~5性approximation,and uncertainty in power system dynamic simulation[J].IEEE Transactions on Power Systems,2006,21(4):1808-1820.
[11]  王守相,郑志杰,王成山.计及不确定性的电力系统时域仿真的区间算法[J].中国电机工程学报,2007,27(7):40-44.Wang Shouxiang,Zheng Zhijie,Wang Chengshan.Power system time domain simulation under uncertainty based on interval method[J].Proceedings of the CSEE,2007,27(7):40-44 (in Chinese).
[12]  Webster M,Tatang M A,McRae G J.Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model[D].Cambridge MA:Massachusetts Institute of Technoloty,1996.
[13]  Hockenberry J R.Evaluation of uncertainty in dynamic, reduced-order power system models[D].Cambridge MA:Massachusetts Institute of Technoloty,2000.
[14]  Hockenberry J R,Lesieutre B C.Evaluation of uncertainty in dynamic simulations of power system models:the probabilistic collocation method[J].IEEE Transaction on Power Systems,2004,19(3):1483-1491.
[15]  Roy S,Ramamurthy D,Lesieutre B C.Studies on the probabilistic collocation method and its application to power system analysis[C]//36th Annual North American Power Symposium.Idaho,USA:36th Annual North American Power Symposium,2004:1-8.
[16]  Billinton R,Wangdee W.Delivery point reliability indices of a bulk electric system using sequential Monte Carlo simulation[J].IEEE Transactions on Power Systems,2006,21(1):345-351.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133