全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2014 

基于云模型和模糊聚类的电力负荷模式提取方法

DOI: 10.13335/j.1000-3673.pst.2014.12.017, PP. 3378-3383

Keywords: cloud,model,fuzzy,clustering,FCM,power,load,pattern,classification,of,power,consumers

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决应用传统模糊C均值(fuzzyC-means,FCM)算法进行电力负荷模式提取时存在的对初始聚类中心敏感、聚类数目不易确定、算法稳定性较差等问题,从负荷曲线形态出发,提出一种基于云模型和模糊聚类的电力负荷模式提取方法。该方法首先针对电力负荷数据的时间特性,对云变换方法进行了维度扩展,使其能够应用于具有时间特征的二维数据处理,将电力用户典型日负荷的频率分布分解为若干个正态云组的叠加,以各云模型中最能代表各定性概念的期望向量集合作为初始聚类中心;然后,基于云模型确定的初始聚类中心和聚类数目,应用FCM算法进行电力负荷模式提取和用户分类。最后,以某电网实际负荷数据进行算例分析,结果证明了该算法的实用性和有效性。

References

[1]  李培强,李欣然,陈辉华,等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78. Li Peiqiang,Li Xinran,Chen Huihua,et al.The characteristics classification and synthesis of power load based on fuzzy clustering[J].Proceedings of the CSEE,2005,25(24):73-78(in Chinese).
[2]  Prahastono I,King D J,Ozveren C S,et al.Electricity load profile classification using fuzzy C-means method[C]// 43rd International Universities Power Engineering Conference.Padova:IEEE,2008:1-5.
[3]  吴星,刘天琪,李兴源,等.基于WAMS/SCADA数据兼容和改进FCM聚类算法的PMU最优配置[J].电网技术,2014,38(3):756-761. Wu Xing,Liu Tianqi,Li Xingyuan,et al.Optimal configuration of PMU based on data compatibility of WAMS/SCADA and improved FCM clustering algorithm[J].Power System Technology,2014,38(3):756-761(in Chinese).
[4]  吴旭,张建华,赵天阳,等.基于模糊聚类和模糊推理的电网连锁故障预警方法[J].电网技术,2013,37(6):1659-1665. Wu Xu,Zhang Jianhua,Zhao Tianyang,et al.A forewarning method of cascading failure in power grid based on fuzzy clustering and fuzzy inference[J].Power System Technology,2013,37(6):1659-1665(in Chinese).
[5]  周湶,孙威,任海军,等.基于最小二乘支持向量机和负荷密度指标法的配电网空间负荷预测[J].电网技术,2011,35(1):66-71. Zhou Quan,Sun Wei,Ren Haijun,et al.Spatial load forecasting of distribution network based on least squares support vector machine and load density index system[J].Power System Technology,2011,35(1):66-71(in Chinese).
[6]  杨浩,张磊,何潜,等.基于自适应模糊C均值算法的电力负荷分类研究[J].电力系统保护与控制,2010,38(16):111-115. Yang Hao,Zhang Lei,He Qian,et al.Study of power load classification based on adaptive fuzzy C means[J].Power System Protection and Control,2010,38(16):111-115(in Chinese).
[7]  刘丽轻.电力用户负荷模式识别系统研究与设计[D].保定:华北电力大学,2012.
[8]  曾博,张建华,丁蓝,等.改进自适应模糊C均值算法在负荷特性分类的应用[J].电力系统自动化,2011,35(12):42-46. Zeng Bo,Zhang Jianhua,Ding Lan,et al.An improved adaptive fuzzy C-means algorithm for load characteristics classification[J].Automation of Electric Power Systems,2011,35(12):42-46(in Chinese).
[9]  周开乐,杨善林.基于改进模糊C均值算法的电力负荷特性分类[J].电力系统保护与控制,2012,40(22):58-63. Zhou Kaile,Yang Shanlin.An improved fuzzy C-means algorithm for power load characteristics classification[J].Power System Protection and Control,2012,40(22):58-63(in Chinese).
[10]  江辉,张清联,彭建春.基于改进云物元模型的风电场电能质量评价[J].电网技术,2014,38(1):205-210. Jiang Hui,Zhang Qinglian,Peng Jianchun.An improved cloud matter element model based wind farm power quality evaluation[J].Power System Technology,2014,38(1):205-210(in Chinese).
[11]  王雁凌,张雪佼,阎敬民.基于变权灰云模型的风电场并网技术性综合评价[J].电网技术,2013,37(12):3546-3551. Wang Yanling,Zhang Xuejiao,Yan Jingmin.Weight-varying gray cloud model based comprehensive evaluation on technical performance of overall grid-integration of wind farm[J].Power System Technology,2013,37(12):3546-3551(in Chinese).
[12]  赵莎莎,吕智林,吴杰康,等.基于数据包络分析和云模型的火电厂效率评价方法[J].电网技术,2012,36(4):184-189. Zhao Shasha,Lü Zhilin,Wu Jiekang,et al.A method to evaluate efficiency of fossil-fuel generating plants based on data envelopment analysis and cloud model[J].Power System Technology,2012,36(4):184-189(in Chinese).
[13]  秦昆,徐敏.基于云模型和FCM聚类的遥感图像分割方法[J].地球信息科学,2008,10(3):302-307. Qin Kun,Xu Min.Remote sensing image segmentation based on cloud model and FCM[J].GEO-Information Science,2008,10(3):302-307(in Chinese).
[14]  张艳玲,赵婷丹,李立.基于云模型聚类的淋巴结图像增强[J].广州大学学报:自然科学版,2013,12(2):61-66. Zhang Yanling,Zhao Tingdan,Li Li.Image enhancement of lymph node based on cloud-model and clustering[J].Journal of Guangzhou University:Natural Science Edition,2013,12(2):61-66(in Chinese).
[15]  王寅杰.云模型理论研究及其在彩色图像聚类分析中的应用[D].兰州:兰州交通大学,2013.
[16]  丁麒,王光增.地区电力用户负荷模式聚类分析应用[J].机电工程,2008,25(9):31-33. Ding Lin,Wang Guangzeng.Application and cluster analysis of regional electric customer load modes[J].Mechanical & Electrical Engineering Magazine,2008,25(9):31-33(in Chinese).
[17]  范九伦,吴成茂.可能性划分系数和模糊变差相结合的聚类有效性函数[J].电子与信息学报,2002,24(8):1017-1021. Fan Jiulun,Wu Chengmao.Clustering validity function based on possibilistic partition coefficient combined with fuzzy variation[J].Journal of Electronics and Information Technology,2002,24(8):1017-1021(in Chinese).
[18]  张忠华.电力系统负荷分类研究[D].天津:天津大学,2007.
[19]  李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. Li Deyi,Liu Changyu.The universality of the theory of normal cloud model[J].Engineering Science,2004,6(8):28-34(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133