Payman A,Pierfederici S,Meibody-Tabar F.Energy control of supercapacitor/fuel cell hybrid power source[J].Energy Conversion and Management,2008,49(6):1637-1644.
[2]
倪雨,许建平.准滑模控制DC-DC变换器分析[J].中国电机工程学报,2008,28(21):1-6.Ni Yu,Xu Jianping.Study of quasi-sliding-mode control switching DC-DC converters[J].Proceedings of the CSEE,2008,28(21):1-6(in Chinese).
[3]
付丽,杨旭,卓放,等.基于滑模变结构控制的数字化全桥移相软开关电源[J].电工电能新技术,2003,22(4):32-35.Fu Chongli,Yang Xu,Zhuo Fang,et al.Digital control based on sliding mode for full bridge ZVS PWM switching power supply[J].Advanced Technology of Electrical Engineering and Energy,2003,22(4):32-35(in Chinese).
[4]
黄凯征,汪万伟,王旭. 基于滑模控制的PWM整流器建模与仿真[J].电网技术,2009,33(8):18-23.Huang Kaizheng,Wang Wanwei,Wang Xu.Modeling and simulation of PWM rectifier based on sliding-mode control[J].Power System Technology,2009,33(8):18-23(in Chinese).
[5]
邹德虎,王宝华.SVC与发电机励磁的逆推Terminal滑模协调控制[J].电网技术,2011,35(4):108-111.Zou Dehu,Wang Baohua.Backstepping terminal sliding mode coordinated control for SVC and generator excitation[J].Power System Technology,2011,35(4):108-111(in Chinese).
[6]
马静,郭锐,王玉慧,等.基于积分滑模控制的广域阻尼鲁棒控制策略[J].电网技术,2013,37(2):362-366.Ma Jing,Guo Rui,Wang Yuhui,et al.Wide-area damping robust control strategy based on integral sliding mode control[J].Power System Technology,2013,37(2):362-366(in Chinese).
[7]
李生民,何欢欢,张玉坤,等.基于滑模变结构的双馈风力发电机直接功率控制策略研究[J].电网技术,2013,37(7):2006-2010.Li Shengmin,He Huanhuan,Zhang Yukun,et al.A sliding mode variable structure-based direct power control strategy for doubly fed induction generator[J].Power System Technology,2013,37(7):2006-2010(in Chinese).
[8]
郑雪梅,郭玲,徐殿国,等.双馈感应发电机空载并网的高阶滑模控制策略[J].电力系统自动化,2012,36(7):12-16.Zheng Xuemei,Guo Ling,Xu Dianguo,et al.High-order sliding mode control for no-load cutting-in of DFIG wind turbines[J].Automation of Electric Power Systems,2012,36(7):12-16(in Chinese).
[9]
Gensior A,Woywode O,Rudolph J,et al.On differential flatness,trajectory planning,observers,and stabilization for DC-DC converters[J].IEEE Transactions on Circuits and Systems:Regular Papers,2006,53(9):2000-2010.
[10]
Zandi M,Payman A,Martin J P,et al.Flatness based control of a hybrid power source with fuel cell/supercapacitor/battery[C]//Energy Conversion Congress and Exposition(ECCE).Atlanta,GA,USA: IEEE,2010:1629-1634.
[11]
Siew-Chong Tan,Yuk-Ming Lai,Chi Kong Tse.Sliding mode control of switching power converters:techniques and implementation[M].USA:CRC Press,2012:244-245.
[12]
宋永华,胡泽春,阳岳希.电动汽车电池的现状及发展趋势[J].电网技术,2011,35(4):1-7.Song Yonghua,Hu Zechun,Yang Yuexi.Present status and development trend of batteries for electric vehicles[J].Power System Technology,2011,35(4):1-7(in Chinese).
[13]
高赐威,张亮.电动汽车充电对电网影响的综述[J].电网技术,2011,35(2):127-131.Gao Ciwei,Zhang Liang.A survey of influence of electrics vehicle charging on power grid[J].Power System Technology,2011,35(2):127-13l(in Chinese).
[14]
杨宏,王鹤,王雪冬,等.可再生能源发电系统中VRLA蓄电池的过充电保护与温度补偿特性的研究[J].太阳能学报,2001,22(2):223-225.Yang Hong,Wang He,Wang Xuedong,et al.Study on overcharging protection and temperature compensation of VRLA battery in renewable energy system[J].Acta Energiae Solaris Sinica,2001,22(2):223-225(in Chinese).
[15]
于远彬.车载复合电源设计理论与控制策略研究[D].吉林:吉林大学,2008.
[16]
汪江卫.HEV车载复合电源系统的控制策略优化研究[D].武汉:武汉理工大学,2011.
[17]
Chandrasekar V,Joseph S C,Chacko R V,et al.Design and implementation of a digital automatic high frequency battery charger for HEV application[C]//2012 IEEE International Electric Vehicle Conference (IEVC).Greenville,SC:IEEE,2012:1-6.
[18]
刘志文,夏文波,刘明波.基于复合储能的微电网运行模式平滑切换控制[J].电网技术,2013,37(4):906-913.Liu Zhiwen,Xia Wenbo,Liu Mingbo,Control method and strategy for smooth switching of microgrid operation modes based on complex energy storage[J].Power System Technology,2013,37(4):906-913(in Chinese).
[19]
Guan Xiaoqing,Wang Jidong.Trajectory planning theory and method of industrial robot[C]//Computer Research and Development (ICCRD).Shanghai,China:IEEE,2011:340-343.
[20]
Thounthong P,Pierfederici S,Davat B.Analysis of differential flatness-based control for a fuel cell hybrid power source[J].IEEE Transactions on Energy Conversion,2010,25(3):909-920.