陈小平, 李新亮, 樊箐. 变比热真实气体效应的高超声速槽道湍流直 接数值模拟[J]. 中国科学: 物理学力学天文学, 2011, 41(8): 969- 979. Chen Xiaoping, Li Xinliang, Fan Jing. Direct numerical simulation of hypersonic turbulent channel flow in thermally perfect gas[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2011, 41(8): 969-979.
[2]
欧阳水吾, 谢中强. 高温非平衡空气绕流[M]. 北京: 国防工业出版社, 2001. Ouyang Shuiwu, Xie Zhongqiang. High temperature non- equilibrium air flow around[M]. Beijing: National Defence Industry Press, 2001.
[3]
杨凯, 原志超, 朱强华, 等. 高超声速热化学非平衡钝体绕流数值模拟[J]. 推进技术, 2014, 35(12): 1585-1591. Yang Kai, Yuan Zhichao, Zhu Qianghua, et al. Numerical simulation of hypersonic thermochemical nonequilibrium blunt body flows[J]. Journal of Propulsion Technology, 2014, 35(12): 1585-1591.
[4]
程晓丽, 苗文博, 周伟江. 真实气体效应对高超声速轨道器气动特性 的影响[J]. 宇航学报, 2007, 28(2): 259-264. Cheng Xiaoli, Miao Wenbo, Zhou Weijiang. Effects of gas on aerody- namic characteristic of a hypersonic orbiter[J]. Journal of Astronautics, 2007, 28(2): 259-264.
[5]
蕫维中, 丁明松, 高铁锁, 等. 热化学非平衡模型和表面温度对气动热 计算影响分析[J]. 空气动力学学报, 2013, 31(6): 692-698. Dong Weizhong, Ding Mingsong, Gao Tiesuo, et al. The influence of thermo- chemical non- equilibrium model and surface temperature on heat transfer rate[J]. Atca Aerodynamics Sinica, 2013, 31(6): 692-698.
[6]
张胜涛, 张庆兵, 王友进, 等. 高超声速气动热化学非平衡效应数值分 析研究[J]. 现代防御技术, 2012, 40(5): 167-173. Zhang Shengtao, Zhang Qingbing, Wang Youjin, et al. Numerical study of chemical non-equilibrium effect on hypersonic aerodynamic heating[J]. Modern Defense Technology, 2012, 40(5): 167-173.
[7]
张胜涛, 陈方, 刘洪. 高超声速飞行器气动热环境的化学非平衡效应 数值研究[J]. 计算物理, 2014, 31(1): 33-43. Zhang Shengtao, Chen Fang, Liu Hong. Numerical study of chemical nonequilibrium effect on aeroheating environment of hypersonic vehicles[J]. Chinese Journal of Computational Physics, 2014, 31(1): 33-43.
[8]
吕丽丽. 高超声速气动热工程算法研究[D]. 西安: 西北工业大学, 2005. Lü Lili. Engineering algorithm for aerodynamic heating of hypersonic[D]. Xi'an: Northwestern Ploytechnical University, 2005.
[9]
吕丽丽, 张伟伟, 叶正寅. 高超声速再入体表面热流计算[J]. 应用力学 学报, 2006, 23(2): 259-262. Lü Lili, Zhang Weiwei, Ye Zhengyin. Predicting heating distributions for hypersonic reentry bodies[J]. Chinese Journal of Applied Mechanics, 2006, 23(2): 259-262.
[10]
李建林, 程兴华, 杨涛. 高超声速二维钝楔激波快速计算方法[J]. 计 算机仿真, 2013, 30(4): 29-32. Li Jianlin, Cheng Xinghua, Yang Tao. Rapid calculate method for shock of hypersonic 2-D blunt wedge[J]. Computer Simulation, 2013, 30(4): 29-32.
[11]
杨亚晶, 何茂刚, 张颖. 混合制冷剂比定压热容的理论推算[J]. 化学 工程, 2007, 35(10): 42-45. Yang Yajing, He Maogang, Zhang Ying. Estimation of isobaric specific heat for mixing refrigerant[J]. Chemical Engineering, 2007, 35(10): 42-45.
[12]
苏长荪, 谭连诚, 刘桂玉. 高等工程热力学[M]. 北京: 高等教育出版 社, 1987. Su Changsun, Tan Liancheng, Liu Guiyu. Higher engineering thermo- dynamics[M]. Beijing: Higher Education Press, 1987.
[13]
Kee R J, Rupley F M, Miller J A. The chemkin thermodynamic data base[R]. Albuquerque, NM: Sandia Natioinal Laboratories, 1991.
[14]
Witte D W, Tatum K E. Computer code for determination of thermally perfect gas properties[R]. Washington, DC: NASA, 1994.
[15]
Fay J A, Riddle F R. Theory of stagnation point heat transfer in disso- ciated air[J]. Journal of the Aeronautical Science, 1985, 25(2): 73-85.
[16]
Anderson J D. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Beijing: Aviation Industry Press, 2014.
[17]
Rose P H, Stark W I. Stagnation point heat transfer measurement in dissociated air[J]. Journal of the Aeronautical Science, 1958, 25(2): 86- 97.
[18]
Anderson J D. Modern compressible flow: With historical perspective[M]. New York: McGraw-Hill, 2003.