全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

车轮多边形化对车辆运行安全性能的影响

, PP. 47-54

Keywords: 车辆工程,车辆/轨道耦合动力学,多边形车轮,安全性能,直线电机,有砟轨道,板式轨道,凹坑,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

用Timoshenko梁、Euler梁分别模拟钢轨、直线电机定子与反力板,用集中质量块、三维实体有限元分别模拟有砟轨道、板式轨道,建立了直线电机车辆/轨道耦合动力学模型,分析了2种轨道上不同磨耗程度车轮对轮轨法向力和脱轨系数的影响。计算结果表明当车辆以速度为60km.h-1通过半径为300m的曲线轨道时,在板式轨道上的轮轨法向力最小、最大值分别为55.34、112.53kN,脱轨系数最大值为0.290,在有砟轨道上的轮轨法向力最小、最大值分别为60.70、123.00kN,脱轨系数最大值为0.289;当车辆以速度为60km.h-1通过半径为600m的曲线轨道时,在板式轨道上的轮轨法向力最小、最大值分别为52.93、107.59kN,脱轨系数最大值为0.064,在有砟轨道上的轮轨法向力最小、最大值分别为59.45、112.33kN,脱轨系数最大值为0.071;当车辆以速度为90km.h-1通过波长为100mm的3种深度的凹坑时,在板式轨道上的轮轨法向力最小、最大值分别为49.54、114.36kN,脱轨系数最大值为0.024,在有砟轨道上的轮轨法向力最小、最大值分别为50.19、134.29kN,脱轨系数最大值为0.031。各种工况下的脱轨系数均在安全限度以内,不会引起脱轨。

References

[1]  POPP K, KRUCE H, KAISER I. Vehicle-track dynamics in the mid-frequency range[J]. Vehicle System Dynamics, 1999, 31(5/6): 423-464.
[2]  NIELSEN J C O, LUNDEN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surface[J]. Vehicle System Dynamics, 2003, 40(1/2/3): 3-54.
[3]  NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels―a literature survey[J]. Proceedings of the Institution of Mechanical Engineerings, Part F: Journal of Rail and Rapid Transit, 2000, 214(2): 79-91.
[4]  MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978.
[5]  JOHANSSON A, NIELSEN J C O. Out-of-round railway wheels―wheel rail contact forces and track response deriverd from field tests and numerical simulations[J]. Proceedings of the Institution of Mechanical Engineerings, Part F: Journal of Rail and Rapid Transit, 2003, 217(2): 135-146.
[6]  JOHANSSON A, ANDERSSON C. Out-of-round railway wheels: a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559.
[7]  BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Rearch Communications, 1997, 24(4): 435-442.
[8]  KOH H I, KWON H B, YOU W H, et al. A study on source mechanism in the interior noise problem of high speed trains[J]. Numerical Fluid Mechanics and Multidiciplinary Design, 2008, 99: 222-228.
[9]  张雪珊,肖新标,金学松.高速车轮椭圆化问题及其对车辆横向稳定性的影响[J].机械工程学报,2008,44(3):50-56. ZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Influence of high speed railway wheels ovalization on vehicle lateral stability[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 50-56.(in Chinese)
[10]  李 玲.车轮多边形化对直线电机车辆动力学行为的影响[D].成都:西南交通大学,2010. LI Ling. Influence of polygonal wheel of subway LIM train on dynamic behavior[D]. Chengdu: Southwest Jiaotong University, 2010.(in Chinese)
[11]  庞绍煌,耿 明.直线电机在轨道车辆运用中的三维分析[J].电力机车与城轨车辆,2004,27(1):31-33. PANG Shao-huang, GENG Ming. Three-dimensional analyse of linear motor application on rail bound vehicles[J]. Electric Locomotives and Mass Transit Vehicles, 2004, 27(1): 31-33.(in Chinese)
[12]  王景宏.采用直线电机牵引的广州地铁车辆[J].机车电传动,2006(6):47-52. WANG Jing-hong. Guangzhou metro vehicles with linear motor traction[J]. Electric Drive for Locomotives, 2006(6): 47-52.(in Chinese)
[13]  ARIAS-CUEVASA O, LI Zi-li, LEWISB R, et al. Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts[J]. Wear, 2010, 268(3/4): 543-551
[14]  LI Zi-li, ZHAO Xin, DOLLEVOET R, et al. Differential wear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects[J]. Vehicle System Dynamics, 2008, 46(S1): 237-246.
[15]  LI Zi-li, ZHAO Xin, ESVELD C, et al. An investigation into the causes of squats―correlation analysis and numerical modelling[J]. Wear, 2008, 265(9/10): 1349-1355.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133