全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非邻近车辆最优速度差模型

, PP. 114-118

Keywords: 交通流,非邻近车辆,最优速度差,线性稳定性分析,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

描述了优化速度模型、广义力模型和全速度差模型,分析了这些模型解决交通流问题的不足。在全速度差模型的基础上,考虑驾驶人对非邻近双前车优化速度差信息的关注程度,提出了最优速度差模型。通过线性稳定性分析,得到交通流的稳定性条件,通过数值模拟,比较了最优速度差模型与全速度差模型。模拟结果表明应用最优速度差模型,临界稳定性曲线的敏感系数变小,自由流区域明显增大;当敏感系数为0.3100s-1时,交通流稳定性增强,并未出现负速度现象;当敏感系数为0.7778s-1且反应系数为0.2时,车辆速度基本保持在0.9635m.s-1;随着反应系数的增大,速度迟滞环逐渐趋向于一点。可见,最优速度差模型有效。

References

[1]  贾 宁,马寿峰.考虑摩擦干扰的机非混合交通流元胞自动机仿真[J].系统仿真学报,2011,23(2):390-394. JIA Ning, MA Shou-feng. Simulation of mixed traffic flow with friction interference using cellular automata[J]. Journal of System Simulation, 2011, 23(2): 390-394.(in Chinese)
[2]  钱勇生,曾俊伟,杜加伟,等.考虑意外事件对交通流影响的元胞自动机交通流模型[J].物理学报,2011,60(6):103-112. QIAN Yong-sheng, ZENG Jun-wei, DU Jia-wei, et al.Cellular automaton traffic flow model considering influence of accidents[J]. Acta Physica Sinica, 2011, 60(6): 103-112.(in Chinese)
[3]  BANDO M, HASEBE K, NAKAYAMA A, et al. Dynami-cal model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51(2): 1035-1042.
[4]  CHRISTOPH W. Asymptotic solutions for a multi-anticipative car-following model[J]. Physica A, 1998, 260(4): 218-224.
[5]  ZHU Hui-bing, DAI Shi-qiang. Analysis of car-following model considering driver’s physical delay in sensing headway[J]. Physica A, 2008, 387(13): 3290-3298.
[6]  SIPAHI R, NICULESCU S I. Stability of car following with human memory effects and automatic headway compensation[J]. Philosophical Transactions of Royal Society, 2010, 368(1928): 4563-4583.
[7]  孙棣华,李永福,田 川.基于多前车位置及速度差信息的车辆跟驰模型[J].系统工程理论与实践,2010,30(7):1326-1332. SUN Di-hua, LI Yong-fu, TIAN Chuan. Car-following model based on the information of multiple ahead and velocity difference[J]. Systems Engineering―Theory and Practice, 2010, 30(7): 1326-1332.(in Chinese)
[8]  HELBING D, TILCH B. Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58(1): 133-138.
[9]  JIANG Rui, WU Qing-song, ZHU Zuo-jin. Full velocity difference model for a car following theory[J]. Physical Review E, 2001, 64(1): 63-66.
[10]  王 涛,高自友, 赵小梅.多速度差模型及稳定性分析[J].物理学报,2006,55(2):634-640. WANG Tao, GAO Zi-you, ZHAO Xiao-mei. Multiple velocity difference model and its stability analysis[J]. Acta Physica Sinica, 2006, 55(2): 634-640.(in Chinese)
[11]  彭光含,孙棣华,何恒攀.交通流双车跟驰模型与数值仿真[J].物理学报,2008,57(12):7541-7546. PENG Guang-han, SUN Di-hua, HE Heng-pan. Two-car following model of traffic flow and numerical simulation[J]. Acta Physica Sinica, 2008, 57(12): 7541-7546.(in Chinese)
[12]  彭光含.交通流复杂耦合动态特性模拟研究[D].重庆:重庆大学,2009. PENG Guang-han. Simulation research on complicated coup-ling dynamical characteristics of traffic flow[D]. Chongqing: Chongqing University, 2009.(in Chinese)
[13]  TIAN Jun-fang, JIA Bin, LI Xin-gang, et al. A new car-following model considering velocity anticipation[J]. Chinese Physics B, 2010, 19(1): 197-203.
[14]  TREIBER M, HENNECHE A, HELBING D. Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model[J]. Physical Review E, 1999, 59(1): 239-253.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133