全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

短波波磨状态的轮轨纵向蠕滑力特性

, PP. 24-31

Keywords: 铁道工程,轮轨,短波波磨,纵向蠕滑力,轮轨非稳态接触,传递函数,波磨深度指数,波长比

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了对具有简谐波形的钢轨短波波磨进行分组与分析轮轨非稳态滚动接触的纵向蠕滑力特性,引入了波磨深度指数与波长比,采用Kalker三维滚动接触理论计算了车轮的纵向蠕滑力,并与采用稳态滚动理论计算结果进行了对比,使用频率响应的系统辨识法对纵向蠕滑力的波动分量进行了拟合,在短波波磨等深度指数条件下,用波长比的二阶传递函数描述了轮轨纵向蠕滑力的波动分量与稳态理论波动分量之间的关系,使用传递函数,由稳态纵向蠕滑力的波动分量计算了非稳态纵向蠕滑力的波动分量,进而计算了非稳态的纵向蠕滑力。计算结果表明在小蠕滑条件下,由Kalker三维滚动接触理论计算出的纵向蠕滑力的波动分量随着波长比的变化产生明显的幅值衰减和相位滞后,波长比越大,幅值衰减越大,相位滞后越多,而稳态滚动理论的计算结果与波长比无关。由传递函数和Kalker数值理论计算的纵向蠕滑力的时域波形、频域幅值谱和相位谱相同。

References

[1]  XIE GANG, IWNICKI S D. Simulations of roughness growth on rails-results from non-Hertzain, non-steady contact model[J]. Vehicle System Dynamics, 2008, 46(1/2): 117-128.
[2]  KNOTHE K, GROSS-THEBING A. Short wavelength rail corrugation and non-steady-state contact mechanics[J]. Vehicle System Dynamics, 2008, 46(1/2): 49-66.
[3]  KALKER J J. Transient phenomena in two elastic cylinders rolling over each other with dry friction[J]. Journal of Applied Mechanics, 1970, 37(3): 677-688.
[4]  KNOTHE K, GROSS-THEBING A. Derivation of frequency dependent creep coefficients based on an elastic half-space model[J]. Vehicle System Dynamics, 1986, 15(3): 133-153.
[5]  GROSS-THEBING A. Frequency-dependent creep coeffi-cients for three-dimensional rolling contact problem[J]. Vehicle System Dynamics, 1989, 18(6): 359-374.
[6]  ALONSO A, GIMéNEZ J. Non-steady state modelling of wheel-rail contact problem for the dynamic simulation of railway vehicles[J]. Vehicle System Dynamics, 2008, 46(3): 179-196.
[7]  PIOTROWSKI J, KALKER J J. A non-linear mathematical model for finite, periodic rail corrugations[C]∥ALIABALI M H, BREBBIA C A. The First International Conference on Contact Mechanics. Southampton: Computational Mechanics Inc., 1993: 413-424.
[8]  KALKER J J. Three-Dimension Elastic Bodies in Rolling contact[M]. Dordrecht: Kluwer Academic Publishers, 1990.
[9]  SHEN Z Y, HEDRICK J K, ELKINS J. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1): 70-82.
[10]  潘立登,潘仰东.系统辨识与建模[M].北京:化学工业出版社,2004. PAN Li-deng, PAN Yang-dong. System Identification and Modelling[M]. Beijing: Chemical Industry Press, 2004.(in Chinese)
[11]  GRASSIE S L, KALOUSEK J. Rail corrugation: characteristics, causes and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1993, 207(1): 57-68.
[12]  温泽峰.钢轨波浪形磨损研究[D].成都:西南交通大学,2006. WEN Ze-feng. Study on rail corrugation[D]. Chengdu: Southwest Jiaotong University, 2006.(in Chinese)
[13]  MüLLER S. A linear wheel-track model to predict instability and short pitch corrugation[J]. Journal of Sound and Vibration, 1999, 227(5): 899-913.
[14]  HEMPELMANN K, KNOTHE K. An extended linear model for the prediction of short pitch corrugation[J]. Wear, 1996, 191(1/2): 161-169.
[15]  XIE GANG, IWNICKI S D. Calculation of wear on a corrugated rail using a three-dimensional contact model[J]. Wear, 2008, 265(9/10): 1238-1246.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133