全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

平面SV波在饱和半空间中沉积谷地周围的散射

, PP. 12-21

Keywords: 饱和半空间,沉积谷地,散射,间接边界积分方程法,平面SV波

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用一种特殊的间接边界积分方程法,求解了平面SV波在饱和半空间中任意形状沉积谷地周围的二维散射问题。结合饱和半空间中膨胀波源和剪切波源格林函数,由分布在沉积和半空间交界面附近两虚拟波源面上的波源分别构造沉积内外的散射波场,由交界面连续条件建立方程并求解确定虚拟波源密度,总波场反应即可由自由波场和散射波场叠加而得。然后通过边界条件验算、退化解答与现有结果的比较以及稳定性检验,验证了方法的计算精度。通过一组典型算例,研究了平面SV波在饱和半空间中沉积谷地周围散射的基本规律,详细给出了不同参数情况沉积谷地附近地表位移幅值和孔隙水压,着重分析了入射SV波频率和角度、边界渗透条件、沉积孔隙率等因素对场地反应的影响,得出了一些有益的结论。

References

[1]  Yuan X M,Liao Z P.Scattering of plane SH waves by acylindrical alluvial valley of circula-rarccross-section[J].Earthquake Engineering and Structural Dynamics,1995,24:1303-1313.
[2]  Boore D M,Larner K L,A ki K.Comparison of two independent methods for the solution of wave scattering problems:response of a sedimentary basin to in cident SH waves[J].Journal of Geophysical Research,1971,76:558-569.
[3]  廖振鹏.工程波动理论导论[M].2版.北京:科学出版社,2002,248-250.
[4]  Sanchez-Sesma F J,Ramos-Martinez J,Campillo M.Anindirect boundary element method applied to smiulate the seismic response of alluvial valleys for in cident P,Sand Rayleigh Waves[J].Earth quake Engineering and Structural Dynamics,1993,22:279-295.
[5]  金峰,张楚汉,王光纶.半椭圆形河谷上沉积层地震响应研究[J].清华大学学报,1993,33(5):23-30.
[6]  KawaseH,Keiiti A K.Astudy on the response of a softbas in for incident P,S,Rayleigh waves with special referen ce to the long duration observed in Mexicocity[J].Bulletin of Seismological Society of America,1989,78:1361-1382.
[7]  李伟华,赵成刚.饱和土沉积谷场地对平面SV波的散射问题的解析解[J].地球物理学报,2004,47(5):911-919.
[8]  Zhou X L,Jiang L F,Wang J H.Scattering of plane wave by circular-arcalluvial valley in a poroelastic half-space[J].Journal of Sound and Vibration,2008,318(4-5):1024-1049.
[9]  Lee V W,Liang J.Free-field (elasticor poroelastic) half-space zero-stressor related boundary conditions[C]//Proceed ings of 14th World Conference on Earthquake Engineering,Beijing,2008.
[10]  Dravinski M,Mossessian T K.Scattering of plane harmonic P,SV,and Rayleigh waves by dipping layers of arbitrary shape[J].Bulletin of Seismological Society of America,1987,77:212-235.
[11]  Liang J,Liu Z.Diffraction of plane SV waves by a cavity in poroelastic halfspace[J].Earthquake Engineering and Engineering Vibration,2009,1:29-46.
[12]  Trifunac M D.Surfacemotion of a semicyl indrical alluvial valley for incident plane SH waves[J].Bulletin of Seism ological Society of America,1971,61:1755-1770.
[13]  Wong H L,Trifunac M D.Surfacemotion of a semielliptical a lluvial valley for incident plane SH waves[J].Bulletin of Seismological Society of America,1974,64:1389-1408.
[14]  Todorovska M,Lee V W.Surfacemotion of shallow circular alluvial valleys for incident plane SH Waves:A nalytical solution[J].Soil Dynamics and Earthquake Engineering,1991,10:192-200.
[15]  Liang J,Liu Z.Diffraction of plane P waves by a canyon of arbitrary shape in poroelastic halfspace(I):Formulation[J].Earthquake Science,2009,22(3):215-222.
[16]  Liang J,Liu Z.Diffraction of plane P waves by a canyon of arbitrary shape in poroelastic halfspace(II):Numerical results and discussion[J].Earthquake Science,2009,22(3):223-222.
[17]  Biot M A.General theory of three-dmiensional consolidation[J].Journal of Applied Physics,1941,12(2):155-164.
[18]  Biot M A.Mechanics of deformation and acoustic propagation in porous media[J].Journal of Applied Physics,1962,33(4):1482-1498.
[19]  Lin C H,Lee V W,TrifunacM D.The reflection of plane waves in a poroelastic halfspace fluid saturated with inviscid fluid[J].Soil Dynamics and Earthquake Engineering,2005,25:205-223.
[20]  Deresiewicz H.On uniqueness in dynamic poroelasticity[J].Bulletin of Seismological Society of America,1963,53:595-626.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133