全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大跨度斜拉桥横桥向减震研究

, PP. 86-92

Keywords: 斜拉桥,减震设计,参数分析,减震效果

Full-Text   Cite this paper   Add to My Lib

Abstract:

斜拉桥在横桥向采用塔-梁、墩-梁固结的约束体系,导致其整体刚度增加,地震惯性力增大,给边墩及其基础的抗震设计造成困难。分别采用位移相关型(方案1)和速度相关型(方案2)两类减震装置对一座斜拉桥的横桥向进行了减震研究。方案1在边墩-主梁间设置位移相关型减震装置,并对其屈服荷载进行了参数分析;方案2对速度相关型减震装置的安装位置和数量进行了优化分析,并对其参数取值进行了参数分析;对横桥向固结体系和减震体系的地震反应进行了对比。结果表明地震作用下两类减震装置发生滞回变形,延长了结构在横桥向的周期,有效降低了边墩的地震剪力和弯矩反应;横桥向墩-梁间的相对位移会增大,可通过减震装置参数的选取将其控制在合理的范围内;塔底的地震剪力和弯矩反应变化不明显。2种方案均可用于斜拉桥横向减震。

References

[1]  Soong T T, Spencer B F Jr. Supplemental energy dissipation: state-of-the-art and state-of-the-practice [J]. Engineering Structures, 2002, 24(3): 243-259.
[2]  黄小国. 连续梁桥防落梁装置试验和理论研究.上海: 同济大学, 2009: 55-66. HUANG Xiaoguo. Experimental and theoretical research on unseating-prevention device for continuous bridges. Shanghai: Tongji University, 2009: 55-66.
[3]  马欧尼, 仝 强. E型钢阻尼支座: 中国, 200820066839.5. 2009-6-24. MA O-ni, TONG Qiang. Bearing with E-shape steel dampers: China, 200820066839.5. 2009-6-24.
[4]  潘 晋, 吴成亮,仝 强, 等. E型钢阻尼器数值仿真及试验研究[J]. 振动与冲击, 2009, 28(7): 192-195. PAN Jin, WU Chengliang, TONG Qiang, et al. Simulation and experimental study on an E-shape steel damper [J]. Journal of Vibration and Shock, 2009, 28(7): 192-195.(in Chinese)
[5]  AASHTO. LRFDSEIS-1-M Guide Specifications for LRFD Seismic Bridge Design[S]. First Edition and Interim Revisions. Washington DC: American Association of State Highway and Transportation Officials, 2008.
[6]  范立础, 胡世德, 叶爱君. 大跨度桥梁抗震设计[M]. 北京:人民交通出版社, 2001: 168-176. FAN Lichu, HU Shide, YE Aijun. Seismic design for long span bridges [M]. Beijing: China Communications Press, 2001: 168-176.
[7]  GUAN Zhongguo, LI Jianzhong, XU Yan. Performance test of energy dissipation bearing and its application in seismic control of a longspan bridge[J]. Journal of Bridge Engineering, 2010, 15(6): 622-630.
[8]  Turkington D H, Carr A J, Cooke N, et al. Seismic design of bridges on lead-rubber bearings [J]. Journal of Structural Engineering, 1989, 115(12): 3000-3016.
[9]  Robinson W H. Lead-rubber hysteretic bearings suitable for protecting structures during earthquakes[J]. Earthquake Engineering & Structural Dynamics, 1982, 10(4): 593-604.
[10]  Aiken I D, Nims D K, Whittaker A S, et al. Testing of passive energy dissipation systems [J]. Earthquake Spectra, 1993, 9(3): 335-370.
[11]  Tam L M, Goel R K. Supplemental viscous damping effects on seismic demands of linear elastic systems. Report No. CP/SEAM-2000/01, California, USA: Department of Civil and Environmental Engineering, California Polytechnic State University, 2000.
[12]  Taylor D P. Fluid dampers for applications of seismic energy dissipation and seismic isolation//Mexican Society for Earthquake Engineering. Proceedings of the Eleventh World Conference on Earthquake Engineering. Acapulco, Mexico: Elsevier Science Ltd, 1996: Paper No.798.
[13]  Symans M D, Constantinou M C. Passive fluid viscous damping systems for seismic energy dissipation[J]. ISET Journal of Earthquake Technology, 1998, 35(4): 185-206.
[14]  Lin W H, Chopra A K. Earthquake response of elastic SDF systems with non-linear fuid viscous dampers[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(9): 1623-1642.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133