全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

测试样本空间变化对贝页斯常规及补集规则权重评估影响的分析

Keywords: 数学模型,文本分类,样板空间

Full-Text   Cite this paper   Add to My Lib

Abstract:

为降低防火墙文本分类计算的误码率,研究基于贝页斯模型的防火墙测试系统的运行效率,提出将贝页斯模型视为线性模型的观点,分析测试样本空间变化对模型不同集合规则权重的影响,建立了有误差补偿功能的MNB分类器数学模型,实验仿真验证了贝页斯多项式数学模型的可行性,确定了MNB分类器内贝页斯多项式数学模型特征变量与目标文本内部个性词汇的对应关系.

References

[1]  Kush E N. Learning to remove internet advertisements[C]//Proceedings of the 3rd International Conference on Autonomous Agents.Seattle,Washington:[s.n.],1999:175-181.
[2]  Hall R J. How to avoid unwanted e-mail[J]. Communication of ACM, 1998,41(3):88-95.
[3]  Cohen W W. Learning rule that classify e-mail[C]//Proceedings of the AAAI Spring Symposium on Machine Learning In Information Access. Stanford, California:[s.n.], 1996:85-90.
[4]  柴宝仁,谷文成,牛占云,等.基于Boosting算法的垃圾邮件过滤方法研究[J].北京理工大学学报,2013,33(1):79-83. Chai Baoren, Gu Wencheng, Niu Zhanyun, et al. A filtering method against junk mail using Boosting algorithm[J]. Transactions of Beijing Institute of Technology, 2013,33(1):79-83. (in Chinese)
[5]  崔超,吴双,张宪忠,等.基于贝叶斯概率理论的防火墙技术研究[J].北京理工大学学报,2012,32(8):801-804. Cui Chao, Wu Shuang,Zhang Xianzhong, et al. Firewall technology based on Bayesian probability theory[J].Transactions of Beijing Institute of Technology,2012,32(8):801-804.(in Chinese)
[6]  崔超,杨威,张宪忠,等.贝叶斯网络在垃圾邮件算法中的应用研究[J].哈尔滨工业大学学报, 2011,43(11):145-148. Cui Chao, Yang Wei, Zhang Xianzhong, et al. Bayesian application study on arithmetic for filtering junk e-mail[J]. Journal of Harbin Institute of Technology, 2011,43(11):145-148. (in Chinese)
[7]  Richard O D.贝叶斯决策论模式分类[M].北京:机械工业出版社,2003. Richard O D. Pattern classification for Bayesian decision theory[M]. Beijing: China Machine Press, 2003. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133