全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于压力信号采集的输气管道混合模型的建立

Keywords: 压力信号,机理模型,神经网络模型,混合模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

为监测输气管道的运行状态,提出一种基于机理模型和神经网络模型的混合建模方法.机理主模型是基于气体在管道中流动的连续性方程、运动方程和气体状态方程而建立的;神经网络模型用来补偿机理模型建模过程中的简化处理及因忽略某些动态参数变化带来的误差,提高了混合模型建模精度,为下一步进行气体管道的泄漏检测和定位奠定基础.为避免流量计检测精度较低的缺点,实验中用高精度压力传感器取代流量计,统一采集压力信号,提高检测精度.基于实验采集压力数据,将机理模型和混合模型输出的精度进行比较.结果表明混合模型的精度得到了较大提高.

References

[1]  王雷.基于神经网络的复杂工业过程混合智能建模研究[D].合肥:中国科技大学, 2003. Wang Lei. Hybrid intelligent modeling of complex industrial process based on neural network[D]. Hefei: University of Science and Technology of China, 2003. (in Chinese)
[2]  石小琳,孙志毅,何秋生,等.信息融合技术在管道泄漏检测与定位中的应用[J].化工自动化及仪表,2011,38(7):789-792. Shi Xiaolin,Sun Zhiyi,He Qiusheng,et al. Information fusion application in oil pipeline leakage detection and location[J]. Control and Instruments in Chemical Industry,2011,38(7):789-792. (in Chinese)
[3]  Ellul I R. Advances in pipeline leak detection techniques[J]. Pipes and Pipelines International, 1989, 34(3):7-12.
[4]  赵江,王昭雷,赵英宝,等.基于信息融合的管道泄漏检测与定位技术应用研究[J].计算机测量与控制,2008,16(7):923-925. Zhao Jiang,Wang Zhaolei,Zhao Yingbao,et al. Application research of pipeline leakage detection and localization based on information fusion technology[J]. Computer Measurement & Control,2008,16(7):923-925. (in Chinese)
[5]  Hu Qiong, Fan Shidong. Pipeline leak detection testing system based on negative pressure wave and flow[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2009, 33(2):402-406.
[6]  耿艳峰, 张朝晖.气体长输管线泄漏检测技术[J].仪器仪表学报, 2001, 22(4):328-330. Geng Yanfeng, Zhang Chaohui. Leak detection technology for the long gas pipeline[J]. Chinese Journal of Scientific Instrument, 2001, 22(4):328-330. (in Chinese)
[7]  李长俊.天然气管道输送[M].2版.北京:石油工业出版社, 2008:64-65, 168-175. Li Changjun. Natural gas pipeline transportation[M]. 2nd ed. Beijing: Oil Industry Press, 2008:64-65, 168-175. (in Chinese)
[8]  胡松, 江小炜, 杨光, 等.滑动平均滤波在微弱脉冲信号检测中的应用[J].计算机与数字工程, 2007, 35(10):169-171. Hu Song, Jiang Xiaowei, Yang Guang, et al. Using of moving average filter in faint pulse signal detection[J]. Computer and Digital Engineering, 2007, 35(10):169-171. (in Chinese)
[9]  何小阳, 李健, 闵力, 等.精馏塔的机理:神经网络混合建模[J].控制工程, 2009, 16(2):211-213. He Xiaoyang, Li Jian, Min Li, et al. Modeling of distillation column based on hybrid neural network and prior knowledge[J]. Control Engineering of China, 2009, 16(2):211-213. (in Chinese)
[10]  Bostjan P W. Hybrid modeling and optimal control of a multi-product batch plant[J]. Control Engineering Practice, 2004, 12(9):1127-1137.
[11]  Ng C W, Hussain M A. Hybrid neural network-prior knowledge model in temprature control of a semi-batch polymerization process[J]. Chemical Engineering and Processing, 2004, 43(4):559-570.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133