Rabiner L. Computer science: the power of speech[J]. Science, 2003,301:1494-1495.
[2]
Somek B, Fajt S, Dembitz A, et al. Coding strategies for cochlear implants[J]. Automatika, 2006,47(1/2):69-74.
[3]
关添,叶大田.电子耳蜗语音处理主流算法的效果比较和最新进展[J].生物医学工程学杂志,2006,23(5):1138-1141.Guan Tian, Ye Datian. Comparison of the clinic results of speech processing strategies and latest advances on cochlear implant[J]. J Biomed Eng, 2006,23(5):1138-1141.(in Chinese)
[4]
Wilson B S, Finley C C, Lawson D T, et al. Better speech recognition with cochlear implants[J]. Nature, 1991,352:236-238.
[5]
Nogueira W, Buchner A, Lenarz T, et al. A psychoacoustic “N of M” type speech coding strategy for cochlear implants[J]. Eurasip Journal on Applied Signal Processing, 2005,18:3044-3059.
[6]
Rouiha K, Bachir D, Ali B. Analysis of speech processing strategies in cochlear implants[J]. Journal of Computer Science, 2008,4(5):372-374.
[7]
Rubinstein J T. How cochlear implants encode speech[J]. Current Opinion in Otolaryngology, 2004,12:444-448.
[8]
王卫东,袁虎.一种新的电子耳蜗的刺激脉冲序列的合成方案[J].中国生物医学工程学报,2005,24(3):375-380.Wang Weidong, Yuan Hu. New strategy of stimulus synthesis in cochlear implant[J]. Chinese Journal of Biomedical Engineering, 2005,24(3):375-380. (in Chinese)
[9]
Zeng F G, Nie K B, Stickney G S, et al. Speech recognition with amplitude and frequency modulations[J]. The National Academy of Sciences of the USA, 2005,102:2293-2298.
[10]
Sit J J, Simonson A M, Andrew J, et al. A low-power asynchronous interleaved sampling algorithm for cochlear implants that encodes envelope and phase information[J]. IEEE TBME, 2007,54:138-149.
[11]
Nie K B, Stickney G S, Zeng F G. Encoding frequency modulation to improve cochlear implant performance in noise[J]. IEEE Trans on Biomed Eng, 2005,52:64-73.
[12]
Logan B F. Information in the zero-crossings of band pass signals[J]. Bell Syst Tech J, 1977,56:487-510.