全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部保持映射和隐马尔科夫模型的模拟电路故障诊断方法

DOI: 10.15918/j.tbit1001-0645.2015.09.008

Keywords: 局部保持映射 隐马尔科夫模型 模拟电路 故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对模拟电路信号的非线性特征,提出一种基于局部保持映射和隐马尔科夫模型的故障模式识别新方法. 首先提取模拟电路的信号特征构成原始高维特征样本空间;然后采用LPP算法将原始高维故障数据映射至低维空间,提取数据的内在流形特征作为特征矢量;最后通过构建混合HMM反映系统的真实状态,并作为分类器实现对各状态的分类识别. 通过仿真分析,将该方法与其他方法进行对比,结果表明,LPP-HMM方法可以有效识别早期故障特征,具有较高的故障识别率

References

[1]  Nirupam Julka, Annamalai Thirunavukkarasu, Peter Lendermann, et al. Making use of prognostics health management information for aerospace spare components logistics network optimization[J]. Computer in Industry, 2011,62:613-622.
[2]  许丽佳,黄建国,王厚军.基于HMM的模拟电路故障诊断方法[J].计算机辅助设计与图形学学报,2010,22(7):1215-1222. Xu Lijia, Huang Jianguo, Wang Houjun. A method for the diagnosis of the incipient faults in analog circuits using HMM[J]. Journal of Computer-Aided Design & Computer Graphics, 2010,22(7):1215-1222. (in Chinese)
[3]  He Xiaofei, Partha Niyogi. Locality preserving projections[C]//Proceedings of the 17th Annual Conference of on Neural Information Processing System. Vancouver: [s.n.], 2003:153-160.
[4]  Wang Zhiyong, He Binbin. Locality preserving projections algorithm for hyperspectral image dimensionality reduction[C]//Proceedings of the 19th IEEE International Conference on Geoinformatics. Shanghai: [s.n.], 2011:1-4.
[5]  Bian Houqin, Chung Ronald. Gene expression data classification using locality preserving projections[C]//Proceedings of the 11th IEEE International Conference on Bioinformatics and Bioengineering. Tai Chung, Taiwan: IEEE, 2011:66-71.
[6]  许丽佳.电子系统的故障预测与健康管理技术研究[D].成都:电子科技大学,2009. Xu Lijia. Study on fault prognostic and health management for electronic system[D]. Chengdu: University of Electronic Science and Technology of China, 2009. (in Chinese)
[7]  柳新民,温熙森,邱静,等.基于隐马尔可夫模型的机电系统机内测试虚警抑制[J].兵工学报,2005,26(3):387-389. Liu Xinmin, Wen Xisen, Qiu Jing, et al. False alarm filter of mechatronics Built2in test based on the hidden markov model[J]. Acta Armamentarii, 2005,26(3):387-389. (in Chinese)
[8]  王国锋,李玉波,秦旭达,等.基于TVAR_HMM的滚动轴承故障诊[J].天津大学学报,2010,43(2):168-173. Wang Guofeng, Li Yubo, Qin Xuda, et al. Fault diagnosis of rolling bearing based on TVAR and HMM[J]. Journal of Tianjin University, 2010,43(2):168-173. (in Chinese)
[9]  李锋.基于流形学习的风电机组传动系统故障诊断方法研究[D].重庆:重庆大学,2011. Li Feng. Research on methods of fault diagnosis for wind turbine transmission system based on manifold learning[D]. Chongqing: Chongqing University, 2011. (in Chinese)
[10]  Li Xiangqian, Jing Shikai, Zhou Jingtao. An approach to fault diagnosis considering false alarm and middle state[C]//Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation. Singapore: Atlantis Press, 2013:427-430.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133