全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小样本贫信息条件下高炉冶炼烧结终点组合预测法

DOI: 10.11835/j.issn.1000-582X.2011.05.022

Keywords: 贝叶斯理论,LS-SVM,烧结终点,预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于烧结过程具有不确定性、多变量耦合、时变时滞的特点,并且烧结终点受多种因素的影响,采用传统控制方法难以将烧结终点控制在要求的范围内,提出应用支持向量机优良的时序预测性能,以及贝叶斯理论能够利用样本信息和先验知识来简化预测模型和优化参数的特性,建立了贝叶斯支持向量机烧结终点的预报模型。首先对烧结终点的机理分析,后分别叙述贝叶斯框架理论和LS-SVM算法,并将贝叶斯证据框架应用于最小二乘支持向量机模型参数的自动选择,建立起时间序列的烧结终点非线性预测模型。在贝叶斯推断的第一层,进行模型参数的选择;在

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133